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Abstract 31 
 32 
Robust species-level methods for quantifying ecological differences have yet to be 33 
incorporated into conservation strategies. Here, we present a conservation prioritisation 34 
approach that integrates species trait data and extinction risk to quantify the contribution of 35 
individual species to overall functional diversity. The Functionally Irreplaceable with Risk of 36 
Extinction (FIRE) metric directs conservation action to species whose extinction is expected 37 
to result in significant losses of functional diversity. We applied our framework to sets of 38 
species at the global scale. First we assessed the world’s birds, highlighting congruent and 39 
divergent priorities identified by trait-based and phylogenetic approaches. Second, we 40 
applied FIRE to the world’s sharks, exploring the impact of imputed traits on prioritisation 41 
robustness. For birds and sharks, we show that prioritising by functional irreplaceability is an 42 
effective strategy to conserve exploited species. The FIRE metric provides a robust tool to 43 
facilitate the incorporation of functional diversity into conservation policy and practice, 44 
revealing species that may be overlooked by existing approaches. 45 
 46 
 47 
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1. Introduction 49 
 50 
The biodiversity crisis is driving species declines and losses across all biomes, threatening 51 
the functioning of healthy ecosystems and the services they provide1. Efforts to mitigate 52 
these declines require strategic decision-making and often utilise established metrics of risk 53 
or priority, such as conservation status2, taxonomic diversity3, endemism4, climate 54 
vulnerability5,6 and evolutionary history7. Despite increasing interest in the variation of 55 
functional traits between species (i.e. functional diversity8–10), relatively little progress has 56 
been made at incorporating this into conservation decision-making11. For example, Goal A of 57 
the United Nations Convention on Biological Diversity (CBD) Kunming-Montreal Global 58 
Biodiversity Framework (GBF) focuses on maintaining, restoring and enhancing biodiversity 59 
to improve functions and services12, yet the accompanying monitoring framework contains 60 
no means for tracking progress towards recovery of ecological integrity and functional 61 
diversity13. 62 
 63 
Measuring the functional diversity of species assemblages can help to reveal how extinction 64 
will impact ecosystem functions and services14, providing an estimate of the ecological role 65 
or functionality of different species within a given assemblage, and the uniqueness or 66 
redundancy of that role in comparison to related or co-occurring taxa. Recent studies 67 
suggest that loss of species with functionally unique traits will drive functional 68 
homogenisation and erosion of ecosystem processes15,16. However, current prioritisation 69 
metrics that consider taxonomic or phylogenetic information alone do not adequately 70 
capture functional diversity17,18.  71 
 72 
Advances in metrics that prioritise species for conservation based on phylogenetic diversity 73 
(the sum of phylogenetic branch lengths connecting a set of taxa19) have produced 74 
approaches that are based on the established conceptual framework of averting expected 75 
losses of the most imperilled biodiversity20–24. For example, the updated Evolutionarily 76 
Distinct and Globally Endangered (EDGE) metric, based on the EDGE2 protocol20, prioritises 77 
species based on the amount of threatened phylogenetic diversity their conservation is 78 
expected to secure. In contrast, existing approaches to integrate functional traits into 79 
conservation prioritisation metrics have largely been based on the original EDGE metric7, 80 
which weighted a measure of distinctiveness by an index of extinction risk in an ad hoc 81 
manner25 (though see Pavione26). The ‘EcoDGE’27 metric is an adaptation of the original 82 
EDGE metric that calculates the ‘distinctiveness’ component of the metric using 83 
dendrograms representing functional diversity rather than phylogenetic trees. The ‘FUSE’28 84 
metric is another adaptation of the original EDGE calculation, whereby an index of priority is 85 
created by summing two measures; functional uniqueness29 and functional specialisation29, 86 
both of which are independently weighted by an ordinal ranking of extinction risk. However, 87 
growing focus on the maintenance of functionally diverse systems for conservation8,9, the 88 
increasing availability of trait data across the tree of life18,30, and established methods to 89 
quantify functional diversity31 provide the opportunity to develop a more clearly 90 
mechanistic prioritisation approach to guide the conservation of functionally irreplaceable 91 
species. 92 
 93 
Here, we detail a method that prioritises functionally irreplaceable and threatened species 94 
for conservation based on their expected contributions to trait space, given the landscape of 95 
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extinction risk across the entirety of trait space. We present the Functionally Irreplaceable 96 
with Risk of Extinction (FIRE) metric, which builds on previous approaches26,28,32 to quantify 97 
the expected loss of functional diversity that can be averted through species-based 98 
conservation action. We then provide two case studies illustrating the utility of our new 99 
approach. The first applies FIRE to the world’s birds, using a comprehensive species-level 100 
trait dataset for over 10,000 species33 to highlight unique and convergent conservation 101 
priorities for maintaining avian functional and phylogenetic diversity. For the second, we 102 
apply FIRE to 557 of the world’s shark species, a smaller taxonomic group with more patchy 103 
data, allowing us to explore how imputation of missing data influences the setting of 104 
conservation priorities using the FIRE approach. We then use functional trait data for birds 105 
and sharks to examine whether species threatened by hunting, collecting, and fishing (i.e. 106 
exploitation) are particularly functionally or evolutionarily irreplaceable, and explore how 107 
conservation strategies to prioritise irreplaceable species perform at safeguarding diversity 108 
at risk from this threat. FIRE builds on existing prioritisation frameworks to provide 109 
functional indices to inform conservation and policy.  110 
 111 
 112 

2. Results  113 
 114 
2.1 Functionally Irreplaceable with Risk of Extinction (FIRE) metric 115 
 116 
The FIRE metric aims to identify and prioritise threatened species whose extinction is 117 
expected to represent disproportionately large losses of unique functional trait space. FIRE 118 
estimates the functional irreplaceability of a species by calculating its expected future 119 
unique contribution to overall trait space given the extinction risk and functionality of all 120 
other species in the same trait space. The trait space from which FIRE is calculated requires 121 
independent trait axes to quantify functional distances between species (Fig. 1, see 122 
Methods). In the case of continuous traits, including morphometric data, these independent 123 
axes can be generated using ordination methods (PCA or PCoA, depending on data type). 124 
Trait probability densities (TPDs) are then used to estimate a probabilistic trait space based 125 
on the results of the ordination (PCA or PCoA)34. The expected loss of overall trait space is 126 
then calculated using a large number (n ≥ 1000) of extinction iterations where, for each 127 
iteration, species are removed from trait space with probabilities derived from their IUCN 128 
Red List categories (Fig. 1, see Methods). For each species, a distribution of functional 129 
irreplaceability scores is then calculated by quantifying the amount of trait space expected 130 
to be uniquely occupied by the species if it were to avoid extinction in each of the n 131 
extinction iterations. The FIRE of a species is then calculated as the product of its functional 132 
irreplaceability and probability of extinction across the distribution of n iterations, and 133 
represents the expected loss of trait space that could be averted through the conservation 134 
of each species (i.e., if the species does not go extinct) (Fig. 1). To facilitate comparability 135 
between functional irreplaceability scores calculated from different trait spaces (for a fixed 136 
taxonomic group), we present the scores as the percentage of total trait space for which we 137 
expect a species to be responsible in the future.  138 
 139 
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 140 
Fig. 1| Calculating the Functionally Irreplaceable with Risk of Extinction (FIRE) metric. Top panel: 141 
Constructing a multivariate trait space requires trait data to quantify functional distances between species. 142 
Probabilistic trait space is estimated from the functional distances between species and an estimated 143 
variability using the TPD package (v1.1.0)34. Colours in trait space indicate high (red) or low (blue) probability of 144 
occupancy. Middle panel: Post-extinction trait space is calculated by removing species predicted to go extinct 145 
in a given iteration following an extinction scenario, whereby species become extinct or survive based on their 146 
probability of extinction. White circles represent areas of trait space no longer occupied by species following 147 
extinction. This step is repeated across 1000 iterations to derive a distribution of uncertainty in extinction 148 
scenarios. IUCN Red List categories are converted to a continuous distribution of extinction probabilities, 149 
following Gumbs et al. 202320 where the median of each Red List category was defined as; Critically 150 
Endangered = 0.97, Endangered = 0.485, Vulnerable =0.2425, Near Threatened = 0.12125, and Least Concern = 151 
0.060625. Species probability of extinction is randomly selected from the distribution of extinction 152 
probabilities defined by their IUCN Red List categories. Species that were not assessed or had IUCN Red List 153 
category listed as Data Deficient, were randomly sampled from the entire distribution of extinction 154 
probabilities. Bottom panel: The functional irreplaceability of a species is calculated as the distinct contribution 155 
of that species (which is immune to extinction during the calculation of its own functional irreplaceability 156 
score) to post-extinction trait space. In the example shown there are five pixels in discretised trait space that 157 
will in future only be covered by the focal species, if the focal species is protected from extinction. The FIRE 158 
value of a species is then calculated as the product of its functional irreplaceability and probability of 159 
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extinction. The calculation is repeated 1000 times to capture the distribution of outcomes from the probability 160 
of extinction. Image credits given in supplementary material. 161 
 162 
2.2 Case study 1: FIRE for the world’s birds 163 
 164 
Birds represent an ideal taxonomic group for testing the FIRE metric, given their long-165 
standing role in conservation research35, the availability of comprehensive, high-resolution 166 
trait data33,36, and a robust literature base linking traits to ecological functions37. 167 
 168 
2.2.1 Trait space summary 169 
To quantify the trait space of the world’s birds (11,005 species), we selected eight 170 
morphological traits that have been shown to provide accurate information on the 171 
functional role and trophic status of birds at the global scale33: total beak length (from the 172 
tip to the skull), beak length to the nares, beak width and depth, wing length, secondary 173 
length (length from the carpal joint to the first of the wings secondary feathers), tail length 174 
and tarsus length. We found consistently weak correlations between morphological traits 175 
and extinction risk. Tarsus length (ρ = 0.160, p < 0.001), beak depth (ρ = 0.157, p < 0.001), 176 
and secondary length (ρ = 0.154, p < 0.001) showed the strongest associations, though 177 
effect sizes remained low. Other traits such as beak length (culmen: ρ = 0.155; nares: ρ = 178 
0.147), wing length (ρ = 0.149), and beak width (ρ = 0.133) also showed significant but weak 179 
positive associations (all p < 0.001). Tail length had the weakest relationship with extinction 180 
risk (ρ = 0.110, p < 0.001). Overall, the low ρ values across traits suggest limited predictive 181 
value of individual morphological variables for extinction vulnerability (Fig. S1). 182 
 183 
We undertook a Principal Components Analysis (PCA) using these eight traits and extracted 184 
the first three axes, which together represent 92% of the total variation. PCA axis 1 (PC1; 185 
76% of total variation) represents an overall size axis, PC2 (10%) represents a trade-off 186 
between beak length vs. tarsus, secondary and tail length, and PC3 (6%) represents a trade-187 
off between beak length vs. beak width and depth. We re-ran the analyses including body 188 
mass as an additional trait. The functional irreplaceability (r = 0.96, p < 0.001) and FIRE (r = 189 
0.97, p < 0.001) values were highly correlated between the two approaches and we only 190 
discuss the results excluding body mass from herein. We used TPDs to account for the 191 
probabilistic nature of species traits38 (see Methods).  192 
 193 
To estimate the predicted loss of trait space in the future, we projected species risk of 194 
extinction onto global trait space (see Methods). Mapping extinction risk onto trait space 195 
revealed marked variation in vulnerability (Fig. 2). We show that extinction in trait space is 196 
likely to occur as a loss of distinct clusters rather than as a uniform contraction around the 197 
periphery.  198 
 199 
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 200 
Fig. 2| Extinction risk of avian trait space. a-c, Trait spaces defined by three principal component axes (PC1, 201 
PC2 and PC3) to show; the direction and weighting of the considered traits (black arrows), and projections of 202 
the predicted erosion of trait space based on IUCN Red List assessments2. Light blue indicates low probability 203 
of extinction and red indicates high probability of extinction. Dashed lines show examples of species position in 204 
trait space, including California condor (Gymnogyps californianus), Brown pelican (Pelecanus occidentalis) and 205 
Sword-billed hummingbird (Ensifera enifera). Traits include; total beak length (from the tip to the skull), beak 206 
length to the nares, beak width and depth, wing length, secondary length (length from the carpal joint to the 207 
first of the wings secondary feathers), tail length and tarsus length. Image credits given in supplementary 208 
material. 209 
 210 
2.2.2 Avian functional irreplaceability 211 
The world’s most functionally irreplaceable birds include several species widely considered 212 
to be morphologically and ecologically unique, such as the Shoebill (Balaeniceps rex), Great 213 
Hornbill (Buceros bicornis), Sunbittern (Eurypyga helias), kiwis (Apteryx spp.), and 214 
Secretarybird (Sagittarius serpentarius; Fig. 3a). Other unique species are more obscure, 215 
including the Coppery Thorntail (Discosura letitiae; DD on Red List) which is only known by a 216 
single museum specimen of unknown provenance. Overall, there was a trend for 217 
hummingbird species to be relatively highly ranked in the list of bird functional 218 
irreplaceability values (discussed in more detail in Text S1). Conversely, the least functionally 219 
irreplaceable species tend to be small passerines (e.g. warblers, tits; see full list in Data S1). 220 
Eleven bird species do not overlap with any other species in trait space and thus receive 221 
maximum irreplaceability scores (Data S1). 222 
 223 
Threatened birds (i.e. Vulnerable [VU], Endangered [EN], and Critically Endangered [CR] on 224 
the Red List) are significantly more functionally irreplaceable than non-threatened (i.e. Least 225 
Concern [LC] and Near Threatened [NT]) birds (mean = 0.065 vs. 0.035, Welch’s t-test: df = 226 
1486.7, p < 0.001), corroborating earlier work highlighting this relationship15,39,40. Of the top 227 
5% most functionally irreplaceable species (N = 551), 25.4% are threatened with extinction, 228 
compared with 11.7% of all birds2. The highest priority FIRE species (i.e. highly functionally 229 
irreplaceable species threatened with extinction) include the Extinct in the Wild Alagoas 230 
Curassow (Mitu mitu), and the Critically Endangered Helmeted Hornbill (Rhinoplax vigil) and 231 
Tristan Albatross (Diomedea dabbenena), alongside species such as the Secretarybird 232 
(Endangered), Shoebill (Vulnerable), and Kākāpō (Strigops habroptila; Critically Endangered; 233 
Fig. 3d; see full list in Data S1).  234 
 235 
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 236 
Fig. 3| Functionally irreplaceable birds. Correlations between (a) evolutionary distinctiveness and functional 237 
irreplaceability and (b) Evolutionarily Distinct and Globally Endangered (EDGE) and Functionally Irreplaceable 238 
with Risk of Extinction (FIRE) scores. Dotted lines represent the upper 5% of scores for each metric. 239 
Illustrations represent examples of species that fall within the top 5% of (c) evolutionary distinctiveness and 240 
functional irreplaceability (d) EDGE and FIRE. Bird species: 1. Sunbittern (Eurypyga helias), 2. Secretarybird 241 
(Sagittarius serpentarius), 3. Shoebill (Balaeniceps rex), 4. California Condor (Gymnogyps californianus). The 242 
top 25 highest ranked (c) functionally irreplaceable and (d) FIRE bird species and numbers represent the (c) 243 
functional irreplaceability and (d) FIRE rank of each species, where species with the same median value have 244 
the same rank. Boxplots represent the range, interquartile range and median of (c) functional irreplaceability 245 
and (d) FIRE scores calculated over 1000 iterations. IUCN Red List population trends (Popn) are denoted with 246 
arrows to represent increasing or decreasing population trends, a dash to represent stable population trends, 247 
and a question mark to represent unknown population trends. Species in bold text fall in the top 5% of both (c) 248 
functional irreplaceability and evolutionary distinctiveness scores and (d) FIRE and EDGE scores. Colours 249 
represent IUCN Red List categories (red = Critically Endangered, orange = Endangered, yellow = Vulnerable, 250 
light green = Near Threatened, green = Least Concern, grey = Data Deficient). Image credits given in 251 
supplementary material. 252 
 253 
2.2.3 Unique and convergent FIRE priorities 254 
To compare convergent and unique conservation priorities between FIRE and the 255 
phylogenetically-informed EDGE approach, we matched the bird species in our FIRE dataset 256 
with those with available EDGE data (N = 10971)41. There is a weak but significant positive 257 
correlation between functional irreplaceability and evolutionary distinctiveness for the 258 
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world’s birds (ρ = 0.1, df = 10684, p < 0.001; Fig. 3a), though species that comprise 259 
monotypic families have significantly higher functional irreplaceability than birds in general 260 
(mean = 0.15 vs. 0.04, Welch’s t-test: df = 33.021, p = 0.03). We identified species within the 261 
highest 5% of FIRE scores, in a threatened or Extinct in the Wild Red List category, and with 262 
available EDGE scores, as our set of priority birds (N = 316). Of these priority 5% species, 165 263 
are also in the top 5% of EDGE scores, and include species such as the Helmeted Hornbill, 264 
Secretarybird, Shoebill, Andean Condor (Vultur gryphus), and New Caledonian Owlet-265 
nightjar (Aegotheles savesi). We highlight these species as amongst the most important for 266 
conservation, given their particularly high contribution to irreplaceable functional and 267 
phylogenetic diversity globally (Fig. 3b, full list in Data S1). 268 
 269 
Conversely, 102 (32.3%) of the top 5% FIRE species do not qualify as priority EDGE species 270 
(i.e. above median EDGE with 95% confidence and threatened with extinction20), and thus 271 
are not currently captured by phylogenetically-informed prioritisation. Further, 71 of the 272 
top 5% FIRE species do not trigger any Key Biodiversity Areas (KBAs), and 45 (14.2%) are 273 
underrepresented in the global KBA network (i.e. <8% of species area of habitat (AOH) 274 
covered by KBAs; Lansley et al. 2025). While many of these species are nevertheless the 275 
subject of targeted conservation actions (e.g. the Okarito Kiwi, Apteryx rowi42), additional 276 
conservation efforts are likely required to promote and conserve some of the world’s most 277 
functionally irreplaceable birds. For example, FIRE scores tend to shift the focus of 278 
conservation attention from less distinctive lineages towards maintaining interconnected 279 
populations of widespread species with important ecological roles, such as Kori Bustard 280 
Ardeotis kori and Greater Rhea Rhea americana. 281 
 282 
 283 
2.3 Case study 2: FIRE prioritisation with incomplete data 284 
 285 
Given the scale and urgency of the biodiversity crisis, it is impractical to limit conservation 286 
research and efforts to only a select few taxonomic groups or regions with complete data 43–287 
45. Major advances have been made to facilitate the inclusion of species lacking data into 288 
assessments of extinction risk46,47, conservation priorities20,48, and functional diversity49. We 289 
designed the FIRE metric to permit the inclusion of species lacking extinction risk data (Fig. 290 
1). In addition, the metric can be calculated using imputed trait data84. To illustrate the 291 
calculation of FIRE for a group with good – but incomplete – trait data coverage, we applied 292 
the metric to the world’s sharks (Selachimorpha). A substantial amount of trait and 293 
extinction risk data are now available for the world’s sharks, a group of high ecological 294 
importance and significant conservation concern28,50. Given their elevated extinction risk 295 
and functional roles in marine ecosystems, sharks have been the subject of previous trait-296 
based prioritisation efforts based on imputed data32.  297 
 298 
2.3.1 Imputing trait space 299 
To quantify the trait space occupied by the world’s sharks, we selected eight traits that 300 
characterise a variety of functional guilds (maximum body length, maximum depth in the 301 
water, trophic level, reproductive guild, habitat preference, growth ratio, and the first two 302 
principal component axes from an analysis of body shape; see Methods) for 557 species 303 
(>99% of all sharks). Taxonomic coverage of these eight traits was incomplete but high 304 
overall (maximum body length: 96.1%, maximum depth: 87.6%, trophic level: 49.9%, body 305 
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shape variation PC1: 91.9%, body shape variation PC2: 91.9%, growth ratio: 61.4%, 306 
reproductive mode: 84.2%, habitat preference: 100%; Table S1). 307 
 308 
We used random forest models (missForest)51 to impute missing trait values and attain 309 
100% coverage for all traits. This method uses a random forest trained on the observed 310 
values of the trait matrix to impute missing values. MissForest makes no prior assumptions 311 
about the distributions of variables, does not incorporate phylogenetic relationships and can 312 
be used to predict both continuous and categorical data51. Additionally, numerous studies 313 
have found a high degree of accuracy when imputing traits using random forest methods 314 
such as missForest49,52,53. Following imputation of all traits, we found generally weak or 315 
inconsistent associations between traits and extinction risk. Shape PC1 and body length 316 
showed the strongest relationships (ρ = 0.41 and ρ = 0.44, respectively; both p < 0.001). 317 
Maximum depth (ρ = -0.20, p < 0.001) and growth ratio (ρ = 0.16, p < 0.001) showed modest 318 
effects. Traits such as trophic level (ρ = 0.06, p = 0.15) and shape PC2 (ρ = -0.09, p = 0.05) 319 
were weak predictors, with minimal explanatory power (Fig. S2). Categorical traits showed 320 
significant differences in extinction score among groups for both habitat preference 321 
(Kruskal-Wallis χ² = 53.54, df = 7, p < 0.001) and reproductive guild (Kruskal-Wallis χ² = 322 
56.23, df = 3, p < 0.001). However, these differences were not clearly directional and did not 323 
indicate a consistent trait gradient with increasing extinction risk (Fig. S2). 324 
 325 
We defined trait space occupied by extant sharks by condensing the dissimilarity distance 326 
matrix of compiled traits using a principal coordinate analysis (PCoA), and extracting the first 327 
four axes, which together represent 45.28% of total variation. To assess how imputation 328 
was distributed across trait space, we calculated the proportion of imputed data for each 329 
species and projected this onto the first two PCoA axes (Fig. S3). We then summarised 330 
imputation density across trait space by calculating the average proportion of imputed data 331 
along both axes. This analysis revealed that imputation was relatively evenly distributed, 332 
with no strong clustering of highly imputed species in any particular region of trait space. 333 
Average imputation values along PC1 ranged from 0 to 0.26 (median: 0.18), and along PC2 334 
from 0.05 to 0.32 (median: 0.15; Fig. S3). Species with a high proportion of imputed data 335 
(more than 50% of data imputed) did not have high functionally irreplaceability scores (Fig. 336 
4a). 337 
 338 
To test the validity of our trait space derived from real and imputed data, we calculated 339 
functional irreplaceability scores from a trait space constructed only with species with 340 
complete trait data (‘gapless dataset’; N = 176). We then generated artificially incomplete 341 
data by randomly removing trait values at the observed proportion of incompleteness, then 342 
imputing them back. We found a strong correlation between the median functional 343 
irreplaceability scores from the gapless dataset and those from the imputed datasets (ρ = 344 
0.78, p < 0.001; see Methods and Fig. 4b). The change in FIRE rankings of the 176 species in 345 
the gapless dataset, when compared with their rankings in the full (imputed) dataset, was 346 
consistent irrespective of rank (ρ = 0.08, df = 175, p = 0.3; Fig. 4c), indicating that the 347 
inclusion of species with incomplete trait data did not affect priority rankings in a biased 348 
manner. Indeed, 27 of 34 species (79%) remained in the highest 20% of rankings, and 13 of 349 
18 (72%) remained in the top 10% across both datasets. However, the robustness of these 350 
results is likely to be sensitive to the traits selected and the imputation method used, 351 
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particularly if trait gaps are non-randomly distributed or if certain traits disproportionately 352 
influence ordination and irreplaceability scores49,53. 353 
 354 
 355 

 356 
Fig. 4| Performance of functional irreplaceability estimations using imputed data for shark species. (a) The 357 
proportion of trait data imputed for species in our complete shark dataset (N = 557) and their functional 358 
irreplaceability scores. (b) The correlation between functional irreplaceability scores of the gapless dataset (no 359 
missing trait data; and a simulated imputed dataset (N = 176). (c) The change in FIRE rankings between the full 360 
FIRE dataset and the gapless dataset (Accuracy) for species with full trait data availability (N = 176).  361 
 362 
2.3.3 Priority FIRE species 363 
The species with the highest FIRE scores are the Sand Tiger Shark (Carcharias taurus; 364 
representing 0.44% avertable expected loss of trait space), Scalloped Hammerhead (Sphyrna 365 
lewini; representing 0.33% avertable expected loss) and Basking Shark (0.31%; Fig. 5). Shark 366 
orders Echinorhiniformes and Lamniformes have the highest average FIRE scores of 0.08% 367 
(sd = 0.02) and 0.07% (sd = 0.12), respectively (more information on functional 368 
irreplaceability and extinction risk in Text S2). We identified 76 shark species as priority FIRE 369 
species, defined as threatened sharks for which we have 95% certainty that they are above 370 
median FIRE (mirroring the approach to identifying priority EDGE species20; full list in Data 371 
S2). All of the top 76 priority FIRE sharks and 67.9% of the 215 priority functionally 372 
irreplaceable sharks have declining or unknown population trends, based on Red List data2. 373 
One Critically Endangered species in the top 28 FIRE sharks, the Lost Shark (Carcharhinus 374 
obsoletus), is Possibly Extinct, and has not been recorded since 193454. 375 
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 376 
Fig. 5| Functionally irreplaceable sharks. Correlations between (a) evolutionary distinctiveness and functional 377 
irreplaceability and (b) Evolutionarily Distinct and Globally Endangered (EDGE) and Functionally Irreplaceable 378 
with Risk of Extinction (FIRE) scores. Dotted lines represent the upper 5% of scores for each metric. Silhouettes 379 
represent examples of species that fall within the top 5% of (c) evolutionary distinctiveness and functional 380 
irreplaceability (d) EDGE and FIRE. Shark species: 1. Broadnose Sevengill Shark (Notorynchus cepedianus), 2. 381 
Zebra Shark (Stegostoma tigrinum), 3. Basking Shark (Cetorhinus maximus), 4. Scalloped Hammerhead 382 
(Sphyrna lewini). The top 25 highest ranked (c) functionally irreplaceable and (d) FIRE shark species. Numbers 383 
represent the (c) functional irreplaceability and (d) FIRE rank of each species, where species with the same 384 
median value have the same rank. Boxplots represent the range, interquartile range and median of (c) 385 
functional irreplaceability and (d) FIRE scores calculated over 1000 iterations. IUCN Red List population trends 386 
(Popn) are denoted with arrows to represent increasing or decreasing population trends, a dash to represent 387 
stable population trends, and a question mark to represent unknown population trends. Species in bold text 388 
fall in the top 25 of both (c) functional irreplaceability and evolutionary distinctiveness scores and (d) FIRE and 389 
EDGE scores. Colours represent IUCN Red List categories (red = Critically Endangered, orange = Endangered, 390 
yellow = Vulnerable, light green = Near Threatened, green = Least Concern, grey = Data Deficient). Silhouette 391 
credit available in supplementary material. 392 
 393 
2.3.4 Relationship between FIRE and EDGE 394 
We applied the EDGE2 protocol20 to calculate evolutionary distinctiveness and EDGE scores 395 
for sharks, and compared these with functional irreplaceability and FIRE. Functional 396 
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irreplaceability and evolutionary distinctiveness showed a weak but significant positive 397 
correlation (Pearson’s r = 0.18, p < 0.001; Fig. 5a). Six species ranked in the top 5% for both 398 
metrics, while three of the top 5% of functionally irreplaceable species, including the 399 
Southern Sleeper Shark (Somniosus antarcticus) and Gummy Shark (Mustelus antarcticus), 400 
were among the bottom 5% for evolutionary distinctiveness. Ten species ranked in the top 401 
5% for both FIRE and EDGE scores (Fig. 5b), with the Sand Tiger Shark (rank 1 for both), 402 
Basking Shark (FIRE rank 3, EDGE rank 2), and Scalloped Hammerhead (FIRE rank 2, EDGE 403 
rank 9) ranking highest across both frameworks. 404 
 405 
2.4 Case study 3: Functional irreplaceability and exploitation 406 
 407 
To determine whether there is a relationship between the different distinctiveness 408 
measures (evolutionary distinctiveness and functional irreplaceability) and species targeted 409 
for human exploitation, we selected sets of species of increasing richness based on  410 
functional irreplaceability and based on evolutionary distinctiveness. Specifically, species 411 
with higher scores in a given metric had a proportionally greater probability of being 412 
selected in a set, we also used randomly selected sets for comparison (see Methods). There 413 
are 468 shark species (84.0% of total) with biological resource use (BRU; i.e. intentional and 414 
unintentional fishing) listed as a threat on the IUCN Red List2. For 168 species (30.2% of 415 
total), BRU is listed as intentional, and for 300 (53.9% of total), BRU is listed as 416 
unintentional. There are 1256 bird species with intentional BRU (i.e. hunting and collecting) 417 
listed as a threat, with an additional 125 species threatened by unintentional BRU2 (see 418 
Methods).  419 
 420 
For birds, selecting species based on functional irreplaceability highlighted more 421 
intentionally exploited species than evolutionary distinctiveness at all sample sizes (Fig. 6a; 422 
Table S2). For sharks, functional irreplaceability again highlights the greatest number of  423 
intentionally exploited species (Fig. 6b; Table S2). Selecting shark species based on 424 
evolutionary distinctiveness performs significantly better than random at highlighting 425 
intentionally exploited species (Fig. 6b; ANOVA with Tukey’s test all p < 0.001 compared 426 
with random; all pairwise comparison results available in Table S2). 427 
 428 
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 429 
Fig. 6| The relationship between intentional exploitation of species and their Functional Irreplaceability and 430 
Evolutionary Distinctiveness. The number of intentionally exploited a) bird and b) shark species highlighted 431 
when 10%-50% of species are selected for conservation based on weighted random draws from different 432 
distributions corresponding to different conservation strategies: uniform (fully random; orange), weighted by 433 
functional irreplaceability (blue) or weighted by evolutionary distinctiveness (green). Boxplots represent 434 
median value (solid line), 25th and 75th percentiles (box edges), and 5th and 95th percentiles (whiskers) from 435 
1000 iterations. Silhouette credit available in supplementary material. 436 
  437 
For both birds and sharks, species with intentional BRU listed as a threat had significantly 438 
higher functional irreplaceability compared to species where intentional BRU is not listed as 439 
a threat (sharks: mean = 0.10 vs. 0.06, df = 249.1, p < 0.001; birds: mean = 0.09 vs. 0.03, df = 440 
1227.5, p < 0.001) and evolutionary distinctiveness (sharks: mean = 18.9 vs. 12.4, df = 225.1, 441 
p < 0.001; birds: mean = 5.3 vs. 4.7, df = 1227.5, p = 0.001).  442 
 443 

3. Discussion 444 
 445 
The FIRE metric offers a novel approach to identify priority species whose conservation is 446 
expected to avert the greatest losses of irreplaceable functional diversity. Given the wealth 447 
of evidence linking functional diversity to the provision of ecosystem processes and services, 448 
it is vital to prevent further erosion of functional trait space55–57. By applying FIRE to global-449 
scale datasets of birds and sharks, we illustrate the metric’s ability to identify priorities for 450 
conservation for different sets of taxa with contrasting levels of species richness and data 451 
coverage. Our results highlight numerous species of both birds and sharks that are not 452 
currently identified as priorities by phylogenetically-informed approaches, alongside 453 
threatened species that are both phylogenetically and functionally irreplaceable. Further, 454 
our results indicate that functionally irreplaceable species are disproportionately threatened 455 
by exploitation (i.e. hunting, collecting, fishing, according to IUCN Red List data).  456 
 457 
The FIRE metric, which measures the expected contribution of species to overall trait space, 458 
builds on approaches such as EcoDGE27 and FUSE28 to integrate functional diversity into an 459 
expected loss framework. As FIRE incorporates complementarity to quantify the risk to each 460 
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point in trait space due to the extinction risk of the species present, the approach also 461 
presents further opportunities beyond species prioritisation. Our methods can be used to 462 
measure the expected erosion of trait space due to extinctions, and to quantify variation in 463 
the probability of occupancy in regions of trait space as extinction risk changes over time. 464 
Through these advances, FIRE can potentially underpin the development of a coherent suite 465 
of metrics to monitor risk to functional diversity, and guide conservation efforts, as has been 466 
achieved with the EDGE and Phylogenetic Diversity indicators adopted by the GBF58. We 467 
calculated FIRE for birds and sharks at the global scale. However, FIRE can also be calculated 468 
at regional, national or community levels. These complementary levels of analysis would 469 
allow us to identify species whose function within specific ecosystems or localities is 470 
expected to be distinct and at risk of being lost59,60. However, the highlighted species in this 471 
context may not be irreplaceable as they are with global scale analyses, because they could 472 
be (re)introduced from other localities outside the focal area. Such assessments 473 
nevertheless have strong potential to inform local, regional and global conservation 474 
planning and policy.  475 
 476 
The trait space underpinning FIRE calculations is generated using TPDs, as we wanted to 477 
account for the probabilistic nature of species traits and consider intraspecific trait 478 
variability when describing functional space38. TPDs measure the probability of occupancy 479 
across trait space, and FIRE is designed to be calculated with either a binary or probabilistic 480 
TPD trait space (see Methods). We used the probabilistic approach to calculate FIRE for 481 
birds, given the large number of species and thus high potential for many species to occupy 482 
areas of trait space fully occupied by multiple other species, leading to such species having a 483 
functional irreplaceability and FIRE score of zero. For our shark case study, which comprised 484 
~6% of the richness of birds, we illustrated the binary approach to the occupation of trait 485 
space by a given species; a species occupies a region of trait space or it does not. As TPDs 486 
use kernels to represent the probabilistic distribution of species in trait space, additional 487 
work to explore the sensitivity of these approaches to kernel parameters is needed. Future 488 
calculations of FIRE may incorporate intraspecific variation to quantitatively parameterise 489 
kernel size and occupancy probability across trait space.  490 
 491 
Though currently formulated based on the use of TPDs, FIRE in its broadest terms – i.e the 492 
amount of expected functional diversity loss that can be averted through conservation 493 
action on a single species – can in principle utilise any approach to measuring functional 494 
richness (e.g., dendrograms). We simply apply extinction to the set of species and compare 495 
total diversity (according to our chosen measure) of a case where our focal species is 496 
permitted to go extinct with a case where our focal species is protected. As with all 497 
functional diversity analyses, FIRE is sensitive to methodological choices, including the 498 
metric used to quantify functional diversity, the traits selected to represent ecological 499 
functions, and the number of PCA / PCoA axes retained. Consequently, any given FIRE 500 
priority list should be viewed as contingent on these choices, rather than as a single fixed or 501 
definitive ranking. 502 
 503 
The growing interest in quantifying functional diversity for conservation purposes61 has led 504 
to an increase in studies examining the patterns and processes of functional diversity and 505 
the impacts of biodiversity loss62. However, persistent knowledge gaps and limited trait data 506 
continue to constrain functional diversity research, often restricting analyses to specific 507 
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taxonomic groups and geographic regions17. As a result, most functional diversity studies 508 
have focused on well-documented groups such as plants and birds33,63, potentially limiting 509 
the generality of their conclusions. This taxonomic and geographic bias underscores the 510 
need to broaden the scope of functional diversity assessments. Recent advances in the 511 
collection and availability of trait data across a wider range of taxa64–66 and the development 512 
of methods for imputing missing data51,67,68 present new opportunities to do so. In this 513 
study, we demonstrate that incomplete datasets can still yield meaningful insights into 514 
functional diversity. By calculating FIRE from an incomplete shark trait dataset using 515 
imputation, we show that it is possible to assess functional diversity more broadly, even in 516 
the face of substantial data gaps. However, reliance on single imputation may overlook the 517 
uncertainty in missing data69. Multiple-imputation approaches offer a promising avenue for 518 
future work, as they better capture this uncertainty69. 519 
 520 
As trait data availability increases across taxonomic groups33,64,65,70–72, the number and types 521 
of traits used to inform trait space will vary and will require careful consideration. For 522 
example, an important aspect of shark life history that we were unable to include due to a 523 
lack of trait availability is changes through different life stages73. Many species will display 524 
changes in functional and behavioural features, such as shifts in trophic position and 525 
foraging location74 throughout their lifetime, and future work should aim to incorporate 526 
these and other trait dynamics to understand the relationship between ecological function 527 
and extinction risk more comprehensively. 528 
 529 
The moderate correlation between FIRE and EDGE for both birds and sharks is to be 530 
expected due to the incorporation of extinction risk in both metrics. However, there is only 531 
a weak correlation between functional irreplaceability and evolutionary distinctiveness for 532 
both birds and sharks - a finding that echoes recent studies that challenge the longstanding 533 
assumption that phylogenetic diversity should be employed as a surrogate for functional 534 
diversity19,75. This disparity is expected because of widespread convergent and divergent 535 
evolution, which weakens the link between phylogeny and function37. Indeed, there is 536 
growing evidence that species traits, rather than phylogeny, provide the most accurate 537 
index of ecological function in a range of taxonomic groups37. Our results thus support the 538 
argument that phylogenetic diversity and functional diversity should be considered as two 539 
interlinked yet distinct dimensions of biodiversity, both of which are vital components of 540 
conservation strategies to preserve ecosystems56,76,77 and promote human wellbeing78,79.  541 
 542 
Indeed, our work further highlights the complex and non-linear relationship between major 543 
adaptive change and evolutionary time80–82. For sharks, three species were in the top 5% of 544 
functional irreplaceability but the bottom 5% of evolutionary distinct species. Exploring the 545 
distribution of these species in trait space highlights that there are multiple clusters that are 546 
occupied by many species. However, though these three species were clustered with their 547 
congeners, they occupy areas on the periphery of their respective genus clusters. Their 548 
unique trait combinations cause these species to occupy low density areas, in at least one 549 
dimension of trait space, which is not occupied by many other species (Fig. S4). It is well 550 
established that certain traits, such as body size and generation length83, are associated with 551 
increased extinction risk, and it is to be expected that regions of trait space dominated by 552 
such traits will be inherently vulnerable15,16,84. Further exploration is needed to understand 553 
how key traits are distributed across the multiple axes of trait space produced by TPDs. 554 
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Where intrinsically sensitive traits cluster in sparsely occupied regions of trait space, there is 555 
the potential for cascading losses due to functionally clumped extinction risk15,16.  556 
 557 
Many of the highest-ranking FIRE species have been identified as priorities by earlier 558 
approaches using different trait data32, calculations of trait space18,78, and treatment of 559 
extinction risk84, supporting the robustness of our identified priorities. While there is 560 
moderate congruence in the priority species identified by FIRE and EDGE, there are high-561 
ranking FIRE species that could be overlooked if only focusing on high-ranking EDGE species, 562 
such as the Slender-billed Vulture (Gyps tenuirostris), Sira Curassow (Pauxi koepckeae), 563 
Angular Roughshark (Oxynotus centrina) and the Pacific Nurse Shark (Ginglymostoma 564 
unami). 565 
 566 
Indeed, prioritising any single biodiversity facet alone risks overlooking species that may 567 
significantly contribute to other ecological or phylogenetic aspects of biodiversity. We 568 
therefore highlighted species that are in the top 5% of both FIRE and EDGE scores as species 569 
of particular interest whose conservation would represent large conservation gains across 570 
multiple dimensions of biodiversity (Fig. 3 and 5). These include many iconic threatened bird 571 
species, such as the Helmeted Hornbill, Shoebill and Kākāpō, along with high-profile shark 572 
species, including Scalloped Hammerhead, Pelagic Thresher and Basking Shark. 573 
 574 
Previous studies on plants79,85 and birds78 indicate that functionally and evolutionarily 575 
distinct species are disproportionately utilised by humans. Our work corroborates these 576 
earlier findings for birds and further shows that the same is true for sharks. Sets of bird and 577 
shark species selected based on functional irreplaceability scores highlight more species 578 
threatened by exploitation than selecting species at random. These findings support earlier 579 
work that suggests that functionally irreplaceable species are targeted by hunting86,87, 580 
fishing86,87 and the pet trade88. Beyond targeted fishing and exploitation, incidental catch is 581 
also a problem for many marine species50,89. Transitioning to the sustainable use and 582 
protection of species that are currently overexploited is essential to maintain functionally 583 
irreplaceable species and the benefits provided to people through ecosystem services.  584 
 585 
Over the last two decades, the EDGE metric has galvanised conservation action by 586 
prioritising highly evolutionarily distinct and threatened species for practical 587 
conservation7,20. Our results build on this foundation by demonstrating how the new FIRE 588 
metric can effectively prioritise species to avert the greatest impending losses of functional 589 
diversity. The erosion and reorganisation of ecological assemblages is already widespread90–590 
92, driven by rapid declines of species populations, particularly those with unique and vital 591 
ecological roles 90–93. Using a trait-based approach to prioritise species with distinct 592 
phenotypes and associated functional roles, the FIRE metric can help to bring a much-593 
discussed but perennially overlooked dimension of biodiversity to the forefront of 594 
conservation planning, policy and action. Targeting this functional dimension is critical to 595 
maintain the complex and resilient ecosystems needed to support human wellbeing now 596 
and into the future13.   597 
 598 
 599 
4. Methods  600 
 601 
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Functionally Irreplaceable with Risk of Extinction (FIRE) calculations 602 
 603 
The Functionally Irreplaceable with Risk of Extinction (FIRE) metric identifies species whose 604 
effective conservation will avert the greatest expected losses of functional diversity. To do 605 
this, for each species, FIRE combines two components: (i) functional irreplaceability, the 606 
expected unique contribution of a given species to overall trait space into the future, based 607 
on the extinction risk of all other species and (ii) the extinction risk of the species. 608 
 609 
Species coverage of trait space 610 
 611 
One way to measure functional irreplaceability, the property we are trying to maximise 612 
through our prioritisation scheme, is to quantify the proportion of TPD trait space uniquely 613 
covered by a species. As a first step it is necessary to find the hypervolume of trait space 614 
where a given TPD summed across all species is non-zero. More generally, however, we can 615 
calculate functional richness as; 616 
 617 

∑ (1 − ∏(1 − 𝑥𝑖,𝑣)

𝑖∈𝑆

)

𝑣∈𝑉

 618 

 619 
where 𝑥𝑖,𝑣 is the probability that species 𝑖 is present in a section 𝑣 of trait space, 𝑆 is the set 620 
of all species and 𝑉 is the set of all possible parts of trait space (these could be voxels in n-621 
dimensional space). Our metric can be calculated as a binary or non-binary measure. In the 622 
binary measure we constrain 𝑥𝑖,𝑣 to be either 1 or 0. In the non-binary measure, we allow 623 
𝑥𝑖,𝑣 to take any value between 0 and 1. These intermediate values may be based on 624 
uncertainty and/or intraspecific variability, which may in turn be connected to the total 625 
abundance of the species where such data are available.  In cases where  we assume some 626 
degree of intraspecific variation in species traits, each species occupies multiple voxels in 627 
trait space and the sum of occupancy across all voxels will be greater than 1. The equation 628 
can be adapted to incorporate extinction risk 𝐸𝑖 as a probability of extinction for each 629 
individual species 𝑖 ∈ 𝑆 to give an expression for the expected future hypervolume of trait 630 
space. 631 

∑ (1 − ∏ (1 − 𝑥𝑖,𝑣(1 − 𝐸𝑖))

𝑖∈𝑆

)

𝑣∈𝑉

 632 

 633 
 634 
Irreplaceable species-specific trait space (functional irreplaceability) 635 
 636 
To measure the irreplaceability of a species based on how much functional diversity it 637 
represents, we considered the extinction risk of all other species overlapping with the trait 638 
space of the focal species to reflect the expected unique occupancy of trait space in the 639 
future. If the focal species overlaps in trait space with few other species that are at high risk 640 
of extinction, there will be a moderate likelihood that this focal species will be the sole 641 
inhabitant of that region of trait space in the future. In contrast, if the focal species overlaps 642 
in trait space with many other species or with species that have low risk of extinction, then 643 
it is very unlikely that the focal species will be the sole inhabitant of that region of trait 644 
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space in the future. The functional irreplaceability can be expressed mathematically as 645 
follows for species 𝑗 ∈ 𝑆 646 

𝐹𝐼(𝑗) = 100 ∙
∑ (𝑥𝑗,𝑣 (1 − ∏ (1 − 𝑥𝑖,𝑣(1 − 𝐸𝑖))𝑖∈𝑆\{𝑗} ))𝑣𝜖𝑉

∑ (1 − ∏ (1 − 𝑥𝑖,𝑣)𝑖∈𝑆 )𝑣∈𝑉

 647 

 648 
The numerator captures the amount of trait space that in the future, given extinction risk of 649 
all species other than the focal species, will rely on the survival of the focal species to 650 
remain covered. The denominator and factor of 100 expresses this as a percentage of total 651 
trait space. Because of the numerator in particular, this equation is computationally 652 
expensive to evaluate for all species. A naive implementation would have computational 653 
time complexity proportional to the size of the trait space multiplied by the square of the 654 
species richness. Furthermore, the whole calculation would still ideally need to be repeated 655 
to capture an uncertainty distribution propagating the error in all the Ei values. Our solution 656 
for calculating functional irreplaceability is to use the repeats required to capture 657 
uncertainty as part of a monte carlo process to simulate the result that the above equation 658 
captures in precise probabilistic terms. This requires three steps and is performed on every 659 
species (summarised in Fig. 1 of the main text).  660 
 661 
Step 1: Calculate the volume of trait space occupied by all species in the analysis.  662 
 663 
Step 2: Stochastically simulate the removal of species based on their extinction risk but with 664 
the constraint that the focal species does not go extinct (i.e., ignore the extinction risk of the 665 
focal species for this step). We followed the Gumbs et al.20 weighting of IUCN Red List 666 
categories94 to estimate probability of extinction for each species; IUCN Red List categories 667 
were converted to represent probability of extinction based on a continuous distribution of 668 
extinction probabilities, where the median of each Red List category was defined as, CR = 669 
0.97; EN = 0.485; VU = 0.2425; NT = 0.12125; LC = 0.060625. Species that were not assessed 670 
or had IUCN Red List category listed as Data Deficient, were randomly sampled from the 671 
entire distribution of extinction probabilities. Using these probabilities, we ran simulations 672 
to determine whether species were removed from the pool (i.e., went extinct). 673 
 674 
Step 3: Calculate a post-extinction trait space with the focal species present, and again with 675 
the focal species removed. Calculate the difference between these two trait space volumes, 676 
to give the species of interest’s distinct contribution to trait space. Divide the result by total 677 
trait space volume (step 1) and multiply this by 100 to get a percentage of the unique trait 678 
space occupied by the focal species resulting in a functional irreplaceability value.  679 
 680 
Avertable loss (FIRE)  681 
 682 
Step 4: To capture the avertable loss of irreplaceable functional diversity we multiplied the 683 
functional irreplaceability of each species (from step 3) by its probability of extinction to 684 
quantify the expected loss of functional diversity given the extinction risk of the species (i.e., 685 
the species’ FIRE value). We calculated risk of extinction by following the Gumbs et al.20 686 
weighting of IUCN Red List categories94 to estimate the probability of extinction for each 687 
species. The full equation for FIRE of species 𝑗 ∈ 𝑆 is thus 688 
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𝐹𝐼𝑅𝐸(𝑗) = 𝐸𝑗 ∙ 100 ∙
∑ (𝑥𝑗,𝑣 (1 − ∏ (1 − 𝑥𝑖,𝑣(1 − 𝐸𝑖))𝑖∈𝑆\{𝑗} ))𝑣𝜖𝑉

∑ (1 − ∏ (1 − 𝑥𝑖,𝑣)𝑖∈𝑆 )𝑣∈𝑉

 689 

 690 
Final functional irreplaceability and FIRE values. We first perform step 1, then calculate 691 
functional irreplaceability and FIRE (perform steps 2-4 from above) over 1000 repeat 692 
iterations to capture a distribution of uncertainty in the extinction scenarios. The final 693 
functional irreplaceability and FIRE values are given by the median value of the sampled 694 
distribution.  695 
 696 
Case study 1: FIRE for the world’s birds 697 
 698 
Data collection 699 
 700 
We collated published data for extinction risk, traits and evolutionary history of birds (Aves). 701 
To taxonomically match species information from different datasets, we used nomenclature 702 
from the latest Birdlife checklist95 (accessed 10/2024), which included 11005 species. All 703 
database manipulation and analyses were performed using R statistical software (v. 4.3.1)96.  704 
 705 
Extinction risk data. We use the IUCN Red List of Threatened Species (v. 2025.1)2 to obtain 706 
information of species extinction risk. This includes assessment data for 10975 species, 707 
including 10936 data sufficient species (Least Concern, LC; Near Threatened, NT; Vulnerable, 708 
VU; Endangered, EN; or Critically Endangered, CR) and 39 categorised as Data Deficient 709 
(DD). The remaining 30 species in our dataset are Not Evaluated (NE) on the Red List. To 710 
calculate a species probability of extinction we generate a continuous distribution of 711 
extinction probabilities following methods outlined by Gumbs et al.20, where the median of 712 
each Red List category was defined as, CR = 0.97; EN = 0.485; VU = 0.2425; NT = 0.12125; LC 713 
= 0.060625. Species probability of extinction was randomly selected from the distribution of 714 
extinction probability values within their Red List categorisation. Where species were 715 
categorised as DD or NE their extinction probability was randomly selected from the whole 716 
distribution of extinction risk values.  717 
 718 
Evolutionary history data. We used the EDGE2 protocol20 to calculate evolutionary 719 
distinctiveness (ED; the expected contribution of a species to overall evolutionary history 720 
given the extinction risk to all other species) and Evolutionarily Distinct and Globally 721 
Endangered (EDGE; the amount of expected loss of evolutionary history that can be 722 
conserved by averting the extinction of a given species) scores for all birds. Evolutionary 723 
distinctiveness and EDGE are the phylogenetic equivalents of functional irreplaceability and 724 
FIRE, and we used the same weightings of extinction risk for EDGE and FIRE calculations. ED 725 
and EDGE scores were calculated as the median scores from a sample of 1000 phylogenetic 726 
trees generated from Jetz et al.97 phylogeny, where species absent from the phylogenies 727 
were inserted based on taxonomy using the same approach as Gumbs et al.41. 728 
 729 
Trait data. As trait data for birds, we used eight continuous morphological measurements 730 
that have been demonstrated to reliably indicate the functional roles and trophic statuses of 731 
birds on a global scale37: (1) total beak length (from the tip to the skull), (2) beak length to 732 
the nares, (3) beak width and (4) depth (at the nares), (5) wing length, (6) secondary length 733 
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(length from the carpal joint to the first of the wings secondary feathers), (7) tail length and 734 
(8) tarsus length. Data for all eight traits were sourced from the AVONET database33. We 735 
also sourced information on species body mass from AVONET for use in a sensitivity test. 736 
We investigated the relationship between traits and extinction risk using Spearman’s rank 737 
correlation. 738 
 739 
Quantifying trait space  740 
 741 
Principle component analysis. The eight morphological traits were all log-transformed and 742 
then centred and scaled to a mean of zero and unit variance. A Principle Components 743 
Analysis (PCA) was undertaken using the eight log-transformed and scaled traits and the 744 
first three PCA axes taken to build the trait space. We used three axes as they explained 745 
over 90% of the total variance and resulted in a more manageable number of species 746 
(compared to when using four PCA axes) with the maximum functional irreplaceability 747 
value. The latter is because, as trait space dimensionality increases, there is more trait space 748 
available in which to measure differentiation and thus in most cases, and keeping all other 749 
parameters equal, species become more functionally distinct from each other. 750 
 751 
Multidimensional trait space. We use TPDs to account for intraspecific trait variability when 752 
describing functional space34. TPDs represent each species in functional trait space as a 753 
multivariate kernel density estimation. We approximated TPD values using the measured 754 
traits available in the analysis and an estimated variability using the TPD package (v. 1.1.0)34. 755 
Each species occupancy is estimated in the same field defined by the three axes of the PCA,  756 
with each grid divided into 20 equal parts. Trait space is held constant following removal of 757 
species in subsequent analyses.  758 
 759 
Functional irreplaceability/FIRE. We apply the methods stated above to calculate functional 760 
irreplaceability and FIRE values for all birds using the non-binary method to calculate species 761 
occupancy of trait space (where the species proportional probabilistic occupancy of each 762 
voxel is calculated). Following the EDGE2 protocol20 and applying it to our FIRE metric, we 763 
defined sets of priority FIRE birds as being those that are both assessed as threatened on 764 
the IUCN Red List and above the median, 75th percentile, and 95th percentile of functional 765 
irreplaceability with 95% confidence (i.e. in 95% or more of the iterations of FIRE 766 
calculation; Data S1 and S2). 767 
 768 
Accounting for outliers in trait space. The five kiwi species (Apterygiformes) represent 769 
extreme outliers in the global bird morphological trait space37 and can have substantial 770 
impact on functional diversity analyses if not accounted for61. Here, to mitigate this effect 771 
we first built the trait space and calculated functional irreplaceability for all species with the 772 
kiwis included, storing the functional irreplaceability values for the five kiwi species. We 773 
then removed the five kiwi species and re-built the trait space (first re-scaling the traits and 774 
re-running the PCA). This second trait space was used to calculate functional irreplaceability 775 
for all other bird species (i.e., all species other than the kiwis). The functional irreplaceability 776 
values for the kiwis were then added to these values prior to FIRE values being calculated 777 
for all birds. This process means that, when the second trait space is analysed, the kiwis are 778 
not included in the species removed based on their extinction risk (i.e., Step 2 above). 779 
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However, this is unlikely to be an issue given they occupy an entirely distinct area of trait 780 
space and thus will not influence the functional irreplaceability of any other species.  781 
 782 
Trait space extinction projections. To understand the future impact of species extinctions on 783 
global trait space, we estimated the proportional loss of each voxel in trait space. Future 784 
occupancy of voxels in trait space is calculated as a function of current occupancy of species 785 
in trait space and extinction probabilities. To estimate this, we calculate the probability that 786 
at least one species remains in a given voxel, after accounting for extinction probabilities, 787 
and divide this by the probability that at least one species currently occupies that voxel: 788 
 789 

1 − ∏ (1 − 𝑥𝑖,𝑣(1 − 𝐸𝑖 ))𝑖∈𝑆

1 − ∏ (1 − 𝑥𝑖,𝑣)𝑖∈𝑆

 790 

 791 
Where  𝑥𝑖,𝑣 is the probability that species 𝑖 is present in voxel 𝑣 of trait space, 𝐸𝑖 is the 792 
probability of extinction for species 𝑖 and 𝑆 is the set of all species. Each future projection is 793 
calculated 1000 times to reflect the distribution of species extinction predictions. These 794 
predictions were mapped onto the three principal component axes of trait space to visualise 795 
the impact of extinction on different areas of trait space and identify certain trait 796 
combinations that may be vulnerable to extinction.  797 
 798 
Avian functional irreplaceability 799 
 800 
We used functional irreplaceability scores to identify bird species with little or no functional 801 
redundancy, including those with no overlap with other species in our trait space. To 802 
explore the relationship between functional irreplaceability and extinction risk, we used 803 
Welch’s t-test to compare the mean functional irreplaceability of threatened (i.e. VU, EN, CR 804 
on the Red List) and non-threatened (LC and NT on the Red List) species. We selected the 805 
species in the top 5% highest functional irreplaceability scores (following Safi et al. 201398), 806 
and calculated the proportion that are threatened, and compared this qualitatively with the 807 
overall proportion of threatened birds, derived from the 2025.1 version of the IUCN Red 808 
List2. 809 
 810 
Unique and convergent FIRE priorities 811 
 812 
To compare convergent and unique conservation priorities between FIRE and the 813 
phylogenetically-informed EDGE approach, we matched the bird species in our FIRE dataset 814 
with those with available EDGE data. To achieve this, we used existing EDGE2 scores for 815 
birds41,99, updated for the 2025.1 Red List extinction risk data100. We limited our 816 
comparisons of FIRE and EDGE data to species for which both data were available (N = 817 
10971). To quantify the relationship between avian functional irreplaceability and its 818 
phylogenetic equivalent, ED, we used Spearman’s rank correlation. We also used Welch’s t-819 
test to test whether species in monotypic families had higher functional irreplaceability than 820 
birds in general. We again followed Safi et al.98 in highlighting species with top 5% highest 821 
FIRE scores as top priorities, and restricted this set to species in a threatened or Extinct in 822 
the Wild Red List category. Using this set of priority species, we identified the number of 823 
species also in the top 5% threatened species based on EDGE scores. We also calculated 824 
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what proportion of these priority species qualify as priority EDGE species (i.e. above median 825 
EDGE with 95% confidence and threatened with extinction20), to identify species not 826 
currently captured by a primary phylogenetically-informed prioritisation. To explore how 827 
well the priority FIRE species are represented by other conservation mechanisms, we 828 
calculated how many species trigger Key Biodiversity Areas101 (KBAs), and used published 829 
estimates of range overlap with KBAs102 to identify species potentially underrepresented in 830 
the global KBA network. Lansley et al.102 suggested that species with <8% of their area of 831 
habitat103 (AOH; IUCN range maps trimmed to suitable habitat and elevation) covered by 832 
KBAs may not be effectively represented in priority areas for maintaining biodiversity.  833 
 834 
Case study 2: Calculating FIRE for sharks 835 
 836 
Data collection 837 
 838 
We collated published data for extinction risk, traits and evolutionary history of sharks 839 
(Selachimorpha). We limited our study to sharks, omitting other clades of Chondrichthyes 840 
(Batoidea and Holocephali), due to limited availability of comparable data for several key 841 
traits, including body shape. To taxonomically match species information from different 842 
datasets, we used nomenclature from FishBase64 (accessed 11/2023), which included 557 843 
species.  844 
 845 
Extinction risk data. We use the IUCN Red List of Threatened Species (v. 2023.1)104 to obtain 846 
information of species extinction risk. This includes assessment data for 540 species, 847 
including 467 data sufficient species (Least Concern, LC; Near Threatened, NT; Vulnerable, 848 
VU; Endangered, EN; or Critically Endangered, CR) and 73 categorised as Data Deficient 849 
(DD). The remaining 17 species in our dataset are Not Evaluated (NE) on the Red List. To 850 
calculate a species probability of extinction we generate a continuous distribution of 851 
extinction probabilities following methods outlined by Gumbs et al.20, where the median of 852 
each Red List category was defined as, CR = 0.97; EN = 0.485; VU = 0.2425; NT = 0.12125; LC 853 
= 0.060625. Species probability of extinction was randomly selected from the distribution of 854 
extinction probability values within their Red List categorisation. Where species were 855 
categorised as DD or NE their extinction probability was randomly selected from the whole 856 
distribution of extinction risk values.  857 
 858 
Evolutionary history data. We used the EDGE2 protocol20 to calculate evolutionary 859 
distinctiveness and EDGE scores for all sharks. ED and EDGE scores were calculated as the 860 
median scores from a sample of 1000 phylogenetic trees generated from the Stein et al.105 861 
tree distribution of 10,000 Chondrichthyes trees, where species absent from the 862 
phylogenies were inserted based on taxonomy using the same approach as Gumbs et al.41. 863 
 864 
Trait data. We collated eight traits for our analysis (Data S4), obtained from FishBase64 and 865 
Sharks of the World: A Complete Guide106. We selected traits based on data availability and 866 
representation of functional guilds107 (Table S1). Our traits were selected to capture a broad 867 
suite of traits that are important to describing species’ roles within an ecosystem reflecting 868 
life history strategies, habitat use, trophic interactions and morphological variation (Table 869 
S1)108,109. To measure body shape, we modify methods shown in Siders et al.108, which uses 870 
Elliptical Fourier analysis (EFA) to represent variation in shark body shape. We collected 515 871 
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illustrated images from Sharks of the World: A Complete Guide to measure the variation in 872 
shark body shape using EFAs. These images were first converted into outlined silhouettes 873 
using photoshop (v. 23.5.5)110. Using the R package Momocs (v. 1.4.1)111 each outline was 874 
scaled and centred on a matrix (Fig. S5) and EFA was performed on the outlines, using 16 875 
harmonics (Fig. S6). Results of the EFA were condensed using Principal Component Analysis 876 
(PCA; Data S5). PC1 and 2 collectively explain 62% of total variation and were used to 877 
represent body shape for our analysis (Fig. S7), PC1 represents 43% variation and PC2 878 
represents 19% variation. 879 
 880 
Imputing missing data  881 
 882 
Our compiled database contained 557 species. To complete missing values in the trait 883 
database, we imputed missing data using the missForest function in the missForest R 884 
package (v. 1.5)51. This method uses a random forest trained on the observed values of the 885 
trait matrix to impute missing values. It can be used to predict both continuous and 886 
categorical data.  887 
 888 
To test the performance of imputation we limited the dataset to only include species with 889 
complete trait data and simulated incomplete trait data by artificially removing trait data. 890 
We randomly removed data from each trait, with the percentage of the trait removal equal 891 
to the percentage of the trait data missing from our full database. Simulated removal of 892 
data was repeated 100 times to get a variable combination of missing values. We then 893 
imputed the missing data using missForest and calculated each species functional 894 
irreplaceability 100 times, and calculated this 100 times from the unimputed dataset. We 895 
compared the median functional irreplaceability of each species from the complete dataset 896 
and the simulated imputed dataset using Spearman’s rank correlation to test the robustness 897 
of imputation using missForest for the observed proportions of missing data. 898 
 899 
To examine the robustness of FIRE rankings to the inclusion of species with missing data, we 900 
calculated FIRE rankings for the set of species with complete trait data and compared these 901 
to the rankings of the species when FIRE was calculated for all species (including imputed 902 
data). To examine the robustness of priority species identified, we calculated the number 903 
and proportion of species that were in the top 10% and 20% of both rankings. We then used 904 
Spearman’s rank correlation to examine the relationship between the absolute change in 905 
rankings for each species between the two datasets, and the priority ranking of each species 906 
in the FIRE rankings restricted to species with complete trait data. If there is no relationship, 907 
this indicates that high priority rankings are similarly unstable as low-priority rankings, 908 
whereas a positive correlation would indicate greater stability in the ranks of high priority 909 
species. 910 
 911 
To assess relationships between species traits and extinction risk, we used Spearman’s rank 912 
correlation to quantify relationships with extinction risk and continuous trait (body length, 913 
trophic level, maximum depth, growth ratio, body shape variation PC1 and body shape 914 
variation PC2). For categorical traits (habitat preference and reproductive guild), we used 915 
Kruskal-Wallis tests to test for differences in extinction score among trait categories.  916 
 917 
Quantifying trait space  918 
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 919 
Distance matrix. Prior to quantifying a distance matrix, we log transformed, scaled and 920 
centred continuous traits to ensure normal distribution and prevent overweighting. We 921 
calculated a dissimilarity distance matrix (Gower’s distance) using the function gawdis (v. 922 
0.1.5)14. This approach prevents disproportionate weighting of categorical traits to produce 923 
multi-trait dissimilarity with more uniform contributions of different traits14.  924 
 925 
Principal coordinate analyses. Using the dudi.pco function in the ade4 package (v. 1.7.22)112 926 
we summarised the functional dissimilarity matrix with PCoA to quantify distances in trait 927 
space between species. Multivariate trait space was built by extracting the first four PCoA 928 
axes. To assess how imputation was distributed across trait space, we calculated the 929 
proportion of imputed data for each species and summarised imputation density across trait 930 
space. We calculated the average proportion of imputed data along the first two PCoA axes 931 
by summarising the mean of each point along both PCoA axes.  932 
 933 
Multidimensional trait space. We approximated TPD values using the measured traits 934 
available in the analysis and an estimated variability using the TPD package (v. 1.1.0)34. Each 935 
species occupancy is estimated in the same field defined by the four axes of the PCoA, with 936 
each grid divided into 25 equal parts. Trait space is held constant following removal of 937 
species in subsequent analyses.  938 
 939 
Functional irreplaceability/FIRE. We apply the methods stated above to calculate functional 940 
irreplaceability and FIRE values for all sharks using the binary method to calculate species 941 
occupancy of trait space (either a species occupies a voxel (1) or it does not (0)). Following 942 
the EDGE2 protocol20 and applying it to our FIRE metric, we defined sets of priority FIRE 943 
sharks as being those that are both assessed as threatened on the IUCN Red List and above 944 
the median, 75th percentile, and 95th percentile of functional irreplaceability with 95% 945 
confidence (i.e. in 95% or more of the iterations of FIRE calculation; Data S2). 946 
 947 
Relationship between FIRE and EDGE 948 
 949 
We used Pearson’s correlations to examine the relationship between functional 950 
irreplaceability and evolutionary distinctiveness scores and between FIRE and EDGE scores. 951 
To determine species that are of particularly high priority for conserving irreplaceable 952 
functional and phylogenetic diversity we identified species that are in the top 5% of both 953 
functional irreplaceability and evolutionary distinctiveness as well as FIRE and EDGE. 954 
 955 
To better understand patterns of high functional irreplaceability in highly speciose groups 956 
(i.e. those with many close evolutionary relatives) we investigated the distribution of three 957 
species— the Gummy Shark (Mustelus antarcticus), Rig (Mustelus lenticulatus) and Southern 958 
Sleeper Shark (Somniosus antarcticus)—and their congeners in trait space. We plot each 959 
dimension of trait space and highlight the three species and their congeners in trait space 960 
(Fig. S4).  961 
 962 
 963 
Functional irreplaceability and exploitation 964 
 965 
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We identified exploited bird and shark species using the IUCN Red List threats classification 966 
scheme (https://www.iucnredlist.org/resources/threat-classification-scheme)2, where 967 
threat type was listed as Biological resource use. We consider a species intentionally 968 
exploited when the species being assessed is the target, as codified under Intentional use, 969 
Intentional use: subsistence/small scale and Intentional use: large scale. Unintentionally 970 
exploited species were those indicated as being impacted by Unintentional effects, 971 
Unintentional effects: subsistence/small scale and Unintentional effects: large scale. Species 972 
that were listed as both intentional use and unintentional effects were not included in the 973 
unintentionally exploited categorisation. 974 
 975 
To explore the potential of different prioritisation strategies at safeguarding intentionally 976 
exploited species, we selected 10%, 20%, 30%, 40% and 50% of all bird and shark species, 977 
weighted by different prioritisation measures: evolutionary distinctiveness score; functional 978 
irreplaceability score and randomly selected species. We repeated this 1000 times for each 979 
approach and compared the number of intentionally exploited species captured by each 980 
approach for each sample size. To test if prioritisation strategies differed significantly at 981 
safeguarding intentionally exploited species we used ANOVA with Tukey's Honestly 982 
Significant Difference post hoc test to test the pairwise difference between strategies.  983 
 984 
To consider species that are unintentionally exploited we compared functional 985 
irreplaceability and evolutionary distinctiveness scores of species using t-tests. To 986 
investigate the potential impact of human exploitation on shark functional diversity and 987 
phylogenetic diversity, we removed species categorised as i) intentionally exploited and ii) 988 
both intentionally and unintentionally exploited to identify the loss of trait space and 989 
cumulative years of evolutionary history. We compared the loss of trait space and 990 
evolutionary history in exploited species to a randomly selected sample of species of the 991 
same number.  992 
  993 
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Supplementary material 1251 
 1252 
Supplementary text 1253 
 1254 
S1 Text | Bird functional irreplaceability; hummingbirds as a case study. 1255 
 1256 
Inspecting the list of the most functionally irreplaceable birds indicates that there are 1257 
numerous hummingbirds included: 12 of the top 50 functionally irreplaceable birds are 1258 
hummingbirds. Hummingbirds as a group are known to be particularly functionally 1259 
distinctive1,2. However, within hummingbirds, while some of these species are widely 1260 
recognised to be functionally unique species (e.g., sword-billed hummingbird Ensifera 1261 
ensifera – the only species with a beak longer than its body, excluding the tail), the inclusion 1262 
of some of the other species in the list of most functionally irreplaceable birds is arguably 1263 
less intuitive. To check that our analytical approach was working as intended, we inspected 1264 
the location of the most irreplaceable hummingbird species in the 3-dimensional global bird 1265 
trait space (the trait space excluding the five kiwi species; Fig. A). In Figure A hummingbirds 1266 
(Trochilidae) are shown as red points with the six most functionally irreplaceable 1267 
hummingbird species shown as blue points, and all other bird species as black points. Two 1268 
things are apparent when inspecting Fig. A: First, as expected, hummingbirds as a group are 1269 
relatively distinct relative to all other birds, at least in this 3-dimensional trait space. Second, 1270 
the hummingbirds assessed to be the most functionally irreplaceable in our analyses are 1271 
clearly located on the edge of trait space, thus indicating that our analyses are working as 1272 
expected. It is likely that, while the individual traits of some species may not make some 1273 
species appear particularly functionally distinct to the naked eye (i.e., they may not have 1274 
extreme individual trait values such as a very long bill), the use of PCA better highlights 1275 
species that have rare combinations of trait values (i.e., species that are relatively distinct in 1276 
PCA space). A similar process is observed with certain palm swift species, where swifts in 1277 
general are located on the edge of trait space, and then certain palm swift species – those 1278 
that have rare combinations of trait values – are located on the edge of this group and thus 1279 
occupying the extremities of trait space. As a final sense check, we highlighted the location 1280 
of the species with the top 100 functional irreplaceability values in the 3-dimensional global 1281 
bird trait space (Fig. B); this plot clearly shows that the species are, as expected, located 1282 
towards the edges of trait space.  1283 
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 1284 

Fig. A | The location of hummingbirds (red points; n = 360) in the global bird trait space. The six 1285 
hummingbird species with the highest functional irreplaceability scores (Coeligena orina, Discosura letitiae, 1286 
Phaethornis yaruqui, Pterophanes cyanopterus, Ensifera ensifera, Chaetocercus berlepschi) are shown as blue 1287 
points and all other species (n = 10,634) as black points. The trait space is that used in the main analyses, built 1288 
after excluding the five kiwi species. Both plots show the same trait space at different rotations.  1289 

Fig. B | The location of the 100 most functionally irreplaceable birds (red points) in the global bird trait 1290 
space. All other species (n = 10,900) are shown as black points. The trait space is that used in the main 1291 
analyses, built after excluding the five kiwi species. Both plots show the same trait space at different rotations.  1292 
 1293 
S2 Text | Shark functional irreplaceability and extinction risk  1294 
 1295 
Current unique irreplaceability and FIRE values.  1296 
Incorporating functional complementarity [i.e. considering the extinction risk of species 1297 
closely associated in trait space] into the functional irreplaceability calculations will change 1298 
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the consequences of each species’ functional irreplaceability score, depending on their 1299 
relation in trait space with other species, and the extinction probability of those species. To 1300 
test the correlation between current unique irreplaceability and our measure of functional 1301 
irreplaceability based on expected loss, we also calculate current irreplaceability as the area 1302 
of current trait space uniquely occupied by a species. We calculated the proportion of each 1303 
species’ functional irreplaceability score that was due to their unique contribution to 1304 
current trait space compared with the proportion gained through extinction scenarios (Fig. 1305 
A).  1306 
 1307 

 1308 
Fig. A | Proportion of unique functional distinctiveness of each species represented by current trait space 1309 
occupancy. The proportion of each species functional distinctiveness score due to current trait space 1310 
occupancy compared to future trait space occupancy. The median amount of functional distinctiveness 1311 
represented by current trait space is 75% of the species functional distinctiveness score. 1312 
 1313 
To ensure there is no overweighting of extinction probabilities, we calculated FIRE scores 1314 
from these current unique irreplaceability scores rather than those from an extinction-1315 
based approach, and correlated those with the original FIRE scores. There was a strong 1316 
correlation between functional irreplaceability and a measure of unique current 1317 
contributions to trait space for each species (ρ = 0.63, p < 0.001; Fig. B).  1318 
 1319 
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 1320 
Fig. B | Correlation between future and current functional distinctiveness. A scatterplot to compare the 1321 
relationship between future functional distinctiveness (where functional complementarity is accounted for) 1322 
and current functional distinctiveness (where all species are included in trait space when calculating functional 1323 
distinctiveness). Correlations between future and current functional distinctiveness were significantly positive 1324 
(Spearman’s correlation: r = 0.96, p < 0.001). 1325 
 1326 
Comparing functional metrics. 1327 
 To investigate the variations between different metrics, we use Pearson’s correlation to 1328 
compare functional irreplaceability against other approaches to quantifying species-specific 1329 
contributions to overall functional diversity. We investigate correlations between functional 1330 
irreplaceability, functional uniqueness (FUn), functional distinctiveness (FDis) and functional 1331 
uniqueness measured in probabilistic trait space (FU). FU is calculated as the functional 1332 
distance to the nearest neighbour of the species of interest, using the uniqueness function 1333 
in the funrar package (v. 1.5.0)3. FDis is calculated as the average functional distance from a 1334 
species to all the others in the given community, using the distinctiveness function in the 1335 
funrar package (v. 1.5.0)3. FU is calculated as the mean overlap of species in probabilistic 1336 
trait space, using the uniqueness function in the TPD package (v. 1.1.0)4. We compared our 1337 
functional irreplaceability measure against other approaches to quantifying species-specific 1338 
contributions to overall functional diversity, and found significant but only moderate 1339 
positive relationships between them (Fig. C). 1340 
 1341 
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 1342 
 1343 
Fig. C | Correlation between functional indices. Scatterplots to compare species-specific functional diversity 1344 
indices between; a) Functional Uniqueness (FUn) and Functional Distinctiveness (FDis; Pearson’s correlation: r 1345 
= 0.56, p < 0.001), b) Functional Uniqueness and Trait Probability Density Functional Uniqueness (TPD FU; 1346 
Pearson’s correlation: r = 0.57, p < 0.001), c) FDis and TPD FU (Pearson’s correlation: r = 0.47, p < 0.001), d) 1347 
TPD functional distinctiveness and TPD FU (Pearson’s correlation: r = 0.66, p < 0.001), e) TPD functional 1348 
distinctiveness and FUn (Pearson’s correlation: r = 0.55, p < 0.001) and f) TPD functional distinctiveness and 1349 
FDis (Pearson’s correlation: r = 0.43, p < 0.001). 1350 
 1351 
Global shark functional irreplaceability. 1352 
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The top 5% of functionally irreplaceable shark species (28 spp.) together occupy 10.85% of 1353 
unique trait space. Overall, 46% of the top 5% functionally irreplaceable species are 1354 
threatened with extinction, compared with 30% of all sharks5. To estimate the projected 1355 
impact of extinction on shark trait space, we calculated the proportion of trait space that 1356 
would be lost with the extinction of all 167 currently threatened species (Vulnerable [VU], 1357 
Endangered [EN], Critically Endangered [CR] on the IUCN Red List). We found that 17.18% 1358 
(compared to an average random sample of 11.53%; sd = 1.24) of global shark trait space is 1359 
at risk of extinction, potentially increasing to 23.58% (compared to an average random 1360 
sample of 20.73%; sd = 1.58) if we were to also consider all Data Deficient [DD] and Not 1361 
Evaluated [NE] species as at risk of extinction. The orders Hexanchiformes, 1362 
Echinorhiniformes and Lamniformes have the highest average functional irreplaceability 1363 
scores of 0.20% (sd = 0.021), 0.18% (sd = 0.001) and 0.18% (sd = 0.018) respectively (Fig. D). 1364 
The orders with the lowest average functional irreplaceability score are Squatiniformes and 1365 
Carcharhiniformes, which both have an average functional irreplaceability score of 0.06% 1366 
(sd = 0.007 and 0.009, respectively) (Fig. D). 1367 
 1368 

 1369 
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Fig. D | Distribution of functional irreplaceability and FIRE across the tree of life. A phylogenetic tree of all 1370 
sharks with branches coloured to represent the median (a) functional irreplaceability and (b) FIRE of all 1371 
descendant species across the shark tree of life. Numbers indicate shark orders. Density plots represent the 1372 
distribution of (a) functional irreplaceability and (b) FIRE scores in each order, both on log scale. Illustrations 1373 
represent the shark species with the highest (a) functional irreplaceability and (b) FIRE score in their respective 1374 
order. Shark species: (a) 1. Barred Bullhead Shark (Heterodontus zebra), 2. Warren's Sixgill Sawshark (Pliotrema 1375 
warreni), 3. Bramble Shark (Echinorhinus brucus), 4. Smoothback Angelshark (Squatina oculata), 5. Angular 1376 
Roughshark (Oxynotus centrina), 6. Bluntnose Sixgill Shark (Hexanchus griseus), 7. Pacific Nurse Shark 1377 
(Ginglymostoma unami), 8. Basking Shark (Cetorhinus maximus), 9. Japanese Swellshark (Cephaloscyllium 1378 
umbratile), (b) 1. Horn Shark (Heterodontus francisci), 2. Anna's Sixgill Sawshark (Pliotrema annae), 3. Bramble 1379 
Shark (Echinorhinus brucus), 4. Smoothback Angelshark (Squatina oculata), 5. Angular Roughshark (Oxynotus 1380 
centrina), 6. Broadnose Sevengill Shark (Notorynchus cepedianus), 7. Pacific Nurse Shark (Ginglymostoma 1381 
unami), 8. Sand Tiger Shark (Carcharias taurus), 9. Scalloped Hammerhead (Sphyrna lewini). The phylogenetic 1382 
tree was selected at random from the set of 1,000 phylogenetic trees used in this study to calculate EDGE 1383 
scores. Illustrations: Marc Dando. 1384 
 1385 
Supplementary figures and tables 1386 
 1387 
 1388 

 1389 
Fig. S1 | Relationships between bird morphological traits and extinction risk. Variation in morphological trait 1390 
values across IUCN Red List categories (EX = Extinct, EW = Extinct in the Wild, CR = Critically Endangered, EN = 1391 
Endangered, VU = Vulnerable, NT = Near Threatened, LC = Least Concern, DD = Data Deficient). Traits include: 1392 
(a) beak length (culmen), (b) beak length (nares), (c) beak width, (d) beak depth, (e) tarsus length, (f) secondary 1393 
length, (g) tail length, and (h) wing length. Boxplots represent the range, interquartile range and median with 1394 
points denoting outliers.  1395 
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 1396 

 1397 
Fig. S2 | Relationships between shark traits and extinction risk. Variation in trait values across IUCN Red List 1398 
categories (CR = Critically Endangered, EN = Endangered, VU = Vulnerable, NT = Near Threatened, LC = Least 1399 
Concern, DD = Data Deficient). Traits include: (a) body length, (b) trophic level, (c)maximum depth, (d) growth 1400 
ratio, (e) body shape variation PC1, (f) body shape variation PC2, (g) habitat preference, and (h) reproductive 1401 
guild. Boxplots (a-f) represent the range, interquartile range and median with points denoting outliers.  1402 
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 1403 
Fig. S3 | The distribution of imputed values across the shark trait space. (a) Distribution of the proportion of 1404 
imputed data across species, projected onto the first two principal coordinate (PCoA) axes. Points are coloured 1405 
according to the proportion of imputed data (blue = low, red = high). Grey bars show marginal distributions of 1406 
imputation density across species. Panels (b–i) show locations in trait space where imputation occurred for 1407 
individual traits: (b) body length, (c) maximum depth, (d) trophic level, (e) body shape variation PC1, (f) body 1408 
shape variation PC2, (g) growth ratio, (h) reproductive guild, and (i) habitat preference. Each red point 1409 
indicates a species with imputed values for the given trait, while blue points represent species with observed 1410 
values. 1411 
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 1412 
Fig. S4 | Occupation of trait space for selected species and their congeners. Probability of occupancy of full 1413 
trait space (a). Area of trait space occupied by all species in Mustelus genus (orange) and space occupied by 1414 
Mustelus antarcticus (b) and Mustelus lenticulatus (c). Area of trait space occupied by all species in Somniosus 1415 
genus (orange) and space occupied by Somniosus antarcticus (red; d). 1416 

 1417 
Fig. S5 | Stacked shark outlines. Scaled and centred outlines to show the body shape silhouettes of 515 1418 
images of shark species collected from Sharks of the World: A Complete Guide11. 1419 
 1420 
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 1421 
Fig. S6 | Harmonic power required to fit shark outline. a) Number of harmonics required to gather cumulative 1422 
harmonic power from the outlines of sharks following elliptical fourier analysis. b) Boxplots to show the 1423 
harmonic power for the sum of harmonics (h1-h29) for the body shape elliptical fourier analysis. 16 harmonics 1424 
were selected to gather 99% of cumulated harmonic power. 1425 
 1426 
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 1427 
Fig. S7 | Principal coordinate analysis of shark body shape elliptical fourier analysis. The first and second 1428 
principal component from a principal component analysis of the body shape elliptical fourier analysis. 1429 
Coordinates quantify variation in shape of shark species, with outlines representing mean body shape for areas 1430 
shown on the graph. 1431 
 1432 
Table S1 | Trait data. Traits used to build trait space and the functional guild each trait represents for both 1433 
birds and sharks.  1434 
 1435 

Clade  Trait  Definition  Source Unit Data Type Number of 
species (% 
coverage) 

Functional Guild 

Sharks Maximum 
body length  

The maximum total 
length of an 

individual species 
(where the mean 

maximum values is 
taken if sex 

maximum length 
differs)6 

Fishbase7 cm Continuous 535 
(96.1%) 

Related to body 
size, metabolism 

and impact on the 
food web8 

Maximum 
depth 

The maximum 
reported depth for 
juveniles and adults 

of the species6 

Fishbase7 m Continuous 488 
(87.6%) 

Can reflect 
vertical mobility, 

swim 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2025. ; https://doi.org/10.1101/2024.06.05.597292doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.05.597292
http://creativecommons.org/licenses/by-nc/4.0/


performance and 
nutrient cycling9 

Trophic 
level  

Where the species 
operate in their 

respective 
foodwebs6 

Fishbase7 1 + mean 
trophic level 

of species 
food items 

Continuous 278 
(49.9%) 

Can reflect trophic 
interactions and 

the postion 
occupied on a 

food web8 

Body shape 
variation 

PC1 

Principal 
component 1 of the 
PCA describing the 

elliptial fourier 
analysis of each 
species lateral 

sillouette10 

Sharks of 
the 

world11 

 
Continuous 512 

(91.9%) 
Can reflect 

morphological 
variation, swim 

performance and 
predator-prey 
interactions12 

Body shape 
variation 

PC2 

Principal 
component 2 of the 
PCA describing the 

elliptial fourier 
analysis of each 
species lateral 

sillouette10 

Sharks of 
the 

world11 

 
Continuous 512 

(91.9%) 
Can reflect 

morphological 
variation, swim 

performance and 
predator-prey 
interactions12 

Growth 
ratio 

The relative 
increase in length of 

the species based 
on the length at 

birth and maximum 
length 

Sharks of 
the 

world11, 
Fishbase7 

length (cm) / 
length at 
birth (cm) 

Continuous 342 
(61.4%) 

Can reflect life 
history 

strategies13,14 

Reproductiv
e mode 

Whether the 
species lays eggs 

(oviparous) or gives 
birth to live young 

(viviparous) 

Sharks of 
the 

world11, 
Fishbase7 

oviparous, 
viviparous, 
aplacental 
viviparous, 
viviparous 

(with a yolk 
sac placenta) 

Categorical 557 (100%) Can reflect life 
history 

strategies13,14 

Habitat 
preference 

The particular 
environment 

preferred by the 
species6 

Fishbase7 pelagic, 
benthopelagi
c, demersal, 

reef-
associated, 

bathypelagic, 
bathydemers

al 

Categorical 469 
(84.2%) 

Can reflect 
hunting or 
foraging 

behaviour, 
nutrient cycling 

and microhabitat 
formation15 

Birds Beak 
culmen 
length  

Length from the tip 
of the beak to the 
base of the skull16 

AVONET16 mm Continuous 11005 
(100%) 

Diet; feeding 
action (e.g. 
probing, cracking, 
hammering); food 
type17,18 

Beak nares 
length  

Length from the 
anterior edge of the 
nostrils to the tip of 

the beak16 

AVONET16 mm Continuous 11005 
(100%) 

Diet; feeding 
action (e.g. 
probing, cracking, 
hammering); food 
type17,18 

Beak width  Width of the beak 
at the anterior edge 

of the nostrils16 

AVONET16 mm Continuous 11005 
(100%) 

Diet; feeding 
action (e.g. 
probing, cracking, 
hammering); food 
type17,18 

Beak depth Depth of the beak 
at the anterior edge 

of the nostrils16 

AVONET16 mm Continuous 11005 
(100%) 

Diet; feeding 
action (e.g. 
probing, cracking, 
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hammering); food 
type17,18 

Tarsus 
length 

Length of the tarsus 
from the posterior 

notch between tibia 
and tarsus, to the 

end of the last scale 
of acrotarsium (at 

the bend of the 
foot) 16 

AVONET16 mm Continuous 11005 
(100%) 

Foraging niche; 
foraging strategy 
(e.g. walking, 
sallying, 
gleaning)19–22 

Wing length Length from the 
carpal joint (bend of 
the wing) to the tip 

of the longest 
primary on the 

unflattened wing16 

AVONET16 mm Continuous 11005 
(100%) 

Foraging niche; 
foraging strategy 
(e.g. walking, 
sallying, 
gleaning)19–22 

Length to 
first 

secondary 

Length from the 
carpal joint (bend of 
the wing) to the tip 

of the first 
secondary, i.e. the 

outermost 
secondary adjacent 

to the innermost 
primary feather. 

Secondary1 is 
roughly equivalent 

to Wing length 
minus Kipp’s 

distance (measured 
in a fully folded and 

flat wing)16 

AVONET16 mm Continuous 11005 
(100%) 

Foraging niche; 
foraging strategy 
(e.g. walking, 
sallying, 
gleaning)19–22 

Tail length Distance between 
the tip of the 

longest rectrix and 
the point at which 

the two central 
rectrices protrude 

from the skin, 
typically measured 

using a ruler 
inserted between 

the two central 
rectrices16 

AVONET16 mm Continuous 11005 
(100%) 

Foraging niche; 
foraging strategy 
(e.g. walking, 
sallying, 
gleaning)19–22 

 1436 

  1437 
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Table S2 | ANOVA pairwise comparisons between prioritisation strategies at capturing intentionally exploited 1438 
bird and shark species with Tukey's Honestly Significant Difference post hoc test. 1439 

 1440 
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