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Abstract

The movements of aquatic animals affect their exposure to threats and the efficacy of
conservation measures, such as Marine Protected Areas (MPAs). However, many species’
movements remain poorly understood and difficult to reconstruct from available datasets,
hampering conservation efforts. This is especially the case for species that rarely surface, for
which data are often limited to observations from acoustic telemetry (detections) and ancillary
sensors, such as archival tags. Here, we pioneer the use of state-of-the-art particle algorithms
to model animal movement, integrate datasets and assess MPA design, using a case study of
the Critically Endangered flapper skate (Dipturus intermedius) in Scotland. Our algorithms led
to 5-fold improvements in maps of space use and 30-fold improvements in residency estimates
(lower mean error) compared to prevailing heuristic methods. By formally integrating tracking
datasets, we were uniquely able to examine movements beyond receivers into fished zones,
MPA -scale residency and specific habitats beyond protected areas that may warrant protection.
This work showcases a probabilistically sound modelling framework that is sufficiently fast,
flexible and accessible to meet the demands of modern animal-tracking datasets in acoustic
telemetry systems. This represents a marked advance for analyses of animal movements and

MPA efticacy worldwide.

Keywords

biologging, biotelemetry, data integration, marine protected area, mobile species, state-space

model
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1. Introduction

Ocean biodiversity is increasingly threatened by anthropogenic activities, such as overfishing.
Since 1970, the Marine Living Planet Index has fallen by 56 %?. Many marine taxa have
declined, especially in coastal ecosystems®. In some taxa, such as elasmobranchs (sharks,
skates and rays), rates of decline are now critical*>. There is a pressing need for research
designed to inform conservation measures that can support these species and bend the curve of

aquatic biodiversity decline®.

Marine Protected Areas (MPAs) are an important conservation solution’. An effective MPA is
a refuge that locally reduces the pressures to which individuals are exposed (especially fishing)
and supports population recovery®. Designing MPAs for mobile species requires an
understanding of animal movement, which shapes individual exposure to threats, hotspots of
habitat use and residency in selected areas’. This requirement has motivated huge interest in

animal electronic tagging and tracking!’.

Tagging and tracking technologies for aquatic species have proliferated in recent years!!. For

marine mammals and seabirds, satellite transmitters are widely used'>!3

. These tags
periodically collect/transmit location data from which movement trajectories can be
reconstructed using well-established statistical approaches!4. However, for species that rarely
surface, satellite tracking is limited and alternative technologies are required'!. Passive acoustic
telemetry systems are extensively deployed'>. These use receiver arrays to detect individual-
specific acoustic transmissions of tagged animals when they move within range. Since array

coverage is often limited, detections are usually sparse and may be considerably enhanced by

ancillary datasets, such as archival (e.g. depth) observations'¢. However, integrating sparse
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detections with ancillary datasets to reconstruct movement patterns (within and beyond
receiver arrays) remains a substantial challenge that has significantly hampered the use of these

data to inform MPA design.

Heuristic methods currently dominate efforts to analyse movements in passive acoustic
telemetry systems!'”"'°. These methods use detections and apply summary statistics, tuning
parameters and other heuristics to map space use around receivers!’. For example, the centre-
of-activity (COA) algorithm computes weighted averages of the receiver locations where
detections were recorded over sequential time intervals (of duration AT)?*?!. Similarly, the
Refined Shortest Path (RSP) algorithm interpolates ‘relocations’ along the shortest paths
between the receivers that recorded sequential detections, assuming distance-dependent
interpolation errors (in line with a tuning parameter termed er.ad)??. Post-hoc smoothing is
used to generate maps of space use or utilisation distributions (UDs). Residency indices (such
as ‘detection days’ or the proportion of days with detections) have also been developed to
quantify residency around receivers?’. These methods have been subject to limited formal
evaluation, but their limitations in sparse receiver arrays (where individual movements are

uncertain) are acknowledged'’1°.

Recent developments in state-space modelling create major opportunities to move beyond
heuristics and strengthen animal-tracking analyses for conservation'®24, In an animal-tracking
context, a state-space model is a hierarchical framework that models an underlying movement
process and the observation processes that connect movements to observations?. Until
recently, state-space modelling routines for passive acoustic telemetry data were bespoke,
computationally expensive and limited to detection data’*?62”. However, it is now possible to

fit state-space models that integrate detections and diverse ancillary datasets (from sensor
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97  measurements to mark-recapture events) using particle filtering—smoothing algorithms!®-?. As

98 examples, this paper considers algorithms that incorporate acoustic observations, depth

99  observations, or both sets of observations simultaneously, i.e., the acoustic-container (AC),
100  depth-contour (DC) and acoustic-container depth-contour (ACDC) algorithms!®. These
101  algorithms represent an individual’s possible location probabilistically with a set of weighted
102  samples, termed ‘particles’. A simulation study showed that particle algorithms consistently
103  outperform heuristic methods, generating refined maps of space use and residency estimates
104  for entire regions of interest, such as MPAs'®. However, particle algorithms have yet to be
105 exploited to inform MPA design in any real-world system.
106
107  Here, we pioneer the application of particle algorithms for conservation with a case study of
108  the Critically Endangered flapper skate (Dipturus intermedius) (Figure 1). This is a large-
109  bodied, largely benthic species that occupies habitats from 0—1200 m deep in north-western
110  Europe?’. Once decimated by overfishing®’, flapper skate remain vulnerable as bycatch®'. In
111 2014, the Loch Sunart to the Sound of Jura MPA was designated for flapper skate in Scotland
112  and acoustic/archival tagging were later undertaken for monitoring®?-34. Preliminary analyses
113  demonstrated that skate exhibit localised movements within the MPA3233-36, However, key
114  conservation questions pertaining to MPA efficacy—including the use of seasonally fished
115  zones beyond receivers, the extent to which skate remain in the MPA in detection gaps and the
116  suitability of MPA boundaries—remained poorly addressed, given incomplete receiver
117  coverage. Movements beyond the MPA, and connectivity to the only known egg nursery (in
118  the Red Rocks and Longay MPA), also remained poorly understood?’. Such knowledge gaps
119  are pervasive among studies reliant upon sparse receiver arrays>®* and highlight the need for
120  statistical tools that can enhance the conservation of mobile aquatic species.

121
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Combining simulations and real-world analyses, this study showcases how particle algorithms
can reveal marked improvements in maps of space use, residency in regions beyond receivers,
MPA suitability and specific habitats beyond MPA boundaries where additional protection may
be warranted. By comparing maps based on acoustic and/or archival data, we also quantify the
contributions of different datasets, providing valuable information for monitoring programmes.
This work provides a basis to strengthen the use of movement data for mobile species

conservation across the globe.
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131  Figure 1. A case-study system. The inset shows the location of the study system in the United
132  Kingdom. The main panel shows study area. The coloured polygons mark the boundary of the
133  Loch Sunart to the Sound of Jura MPA. This includes zones that are open (blue) and closed
134  (red) to fisheries. Tagging locations (3¥), receivers (x) and bathymetric contours are marked.
135  For spatial data sources, see Supporting Information §1 and Table S1.
136
137 2. Results
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138

139  211. Overview

140

141  We conducted simulation-based and real-world analyses of animal movements in relation to an
142  MPA using two heuristic algorithms (COAs and RSPs) and three particle filtering—smoothing
143  algorithms (AC, DC and ACDC) (Figures 1 and S1). In simulation analyses (labelled A1 and
144 A2), we evaluated algorithm performance (A1) and sensitivity (A2). In real-world analyses
145 (A3 and A4), we modelled electronic tagging and tracking data from flapper skate (Figure S2).
146  Table S2 provides the overview and a labelling hierarchy for analyses (A1, Al.1, etc.).

147

148 2.2.  Simulation analysis

149

150 2.2.1. Performance analyses

151

152  In simulation analyses of algorithm performance (A1), particle algorithms reproduced the
153  utilisation distributions (UDs) and residency patterns exhibited by 100 simulated paths with
154  impressive accuracy and precision, while the performance of prevailing heuristic methods
155  varied. Heuristic algorithms were calibrated for the analysis by quantifying the mean absolute
156  error (ME) between ‘true’ and reconstructed UDs across a range of candidate parameter values
157  (Al.1.1). For the COA algorithm an optimal setting of AT = 2 days was identified (Figure S3).
158 For RSPs, ME weakly declined with increasing distance-error (er.ad) values but there was
159 no winning choice of er.ad on average. We selected er.ad =500 m as an ‘optimal’
160 compromise between ME and implementation success (Figure S3). Particle algorithms were
161  parameterised following the data-generating movement and observation processes used to

162  simulate paths, based on prior research, domain knowledge and a literature review (see
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163  Methods). All algorithms were successfully implemented (A 1.2) for all simulated paths (Figure
164  S4).
165
166 In a visual analysis of UDs for a subset (1-3) of simulated paths (A1.3.1), we found that
167  heuristic UDs were moderately accurate but surpassed by those from particle algorithms
168  (Figures S5-6 versus S7). Both heuristic algorithms effectively reconstructed the extent of
169 movements for Path 3 (for which movements were localised around receivers), but
170  underestimated those for Paths 1 and 2 (which included movements to different areas) (Figures
171  S5-6). Hotspot placement was partially correct (Figures S5-6). Particle algorithms represented
172  simulated patterns more accurately (Figure S7).
173
174 Across all 100 simulated paths, a clear ranking of algorithms emerged from analysis (A1.3.2)
175  of the ME in UD estimation (Figure 2A). All algorithms outperformed the null model on
176  average. Performance of the two heuristic algorithms was similar and varied substantially
177  across repeated realisations of the same data-generating-processes (occasionally overlapping
178  with the null model). Particle algorithms consistently outperformed the heuristic algorithms—
179  with median MEs, and standard deviations in ME, 2.7-5.0 and 1.7-3.6 times lower,
180 respectively. For particle algorithms, the ranking was DC, AC and ACDC (best). Compared to
181  the AC and DC algorithms, median ME for the ACDC algorithm was 1.6—1.8 times lower.
182
183  Algorithm ranking for residency estimation (A 1.3.3) was similar (Figures 2B and S8). The null
184  model consistently underestimated residency. The proportion of days with detections (DD)
185  benchmark also underestimated residency, while heuristic algorithms overestimated residency,
186  except in open areas where receivers were absent. For heuristic algorithms, median residency

187  error for the MPA was 12 % (standard error =~ 22 %). Particle algorithms performed better,
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188  estimating residency in the MPA with a median error below 1 % and a precision (standard error)
189 of 7.6 (AC), 3.7 (DC) and 2.8 (ACDC) %. These statistics represent >30-fold improvements in

190 residency error and 2.8-8.3-fold improvements in precision compared to heuristic algorithms.

191
Utilisation distribution error o MPA residency estimation error
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192 Algorithm Algorithm

193  Figure 2. Algorithm performance for estimating (A) utilisation distributions and (B)
194  residency. Violins show the distribution of error across 100 simulated paths. See text for
195  abbreviations. For the full figure, see Figure S8.

196

197  2.2.2. Sensitivity analysis

198

199 The sensitivity analyses (A2) revealed algorithm sensitivity to mis-specification. We
200 reimplemented algorithms with more restrictive and flexible parameterisations and examined
201  variation in performance. Heuristic algorithms were successfully re-implemented for all
202  simulated paths (A2.1). For particle algorithms, parameter mis-specification was associated
203  with convergence failures (Figure S4). The restrictive depth observation model, which
204  underestimated the amount of error in the depth observations, was particularly problematic.
205 However, multiple independent runs of the particle filter facilitated convergence in some

206  simulations.

10
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207

208  Patterns of space use and residency estimates (A2.2) were relatively robust to algorithm
209  parameterisation. The visual analysis (A2.2.1) revealed consistency in UDs between algorithm
210  parameterisations (Figures S5-6 and S9-10). For heuristic algorithms, more flexible
211  parameterisations produced more diffuse maps, but differences were small (Figures S5-6). For
212  the particle algorithms that converged, maps were relatively robust to the degree of parameter
213  mis-specification we explored (Figures S9-10). The main exception to this was mis-
214 specification of the depth observation model (in the DC and ACDC algorithms), which affected
215  the distribution of hotspots and patterns of space use (Figure S9). Particle-based maps were
216  highly reproducible (Figure S10). Analyses of UD ME (A2.2.2) and residency (A2.2.3)
217  produced similar results (Figures S11-12).

218

219 2.3. Real-world analysis

220

221  2.3.1. Observations

222

223  Real tracking data from modelled skate exhibited diverse patterns (Figure S2). The number of
224 detections per individual/month varied from 43—8887 (median = 1152). Some individuals were
225  detected regularly while others went undetected for longer periods (up to 25 days). Most
226  individuals were only detected around southerly receivers. The two exceptions were individual
227 25 (a mature female), which moved between southern and northern receivers over a 14-month
228  period, and individual 28 (an immature female), which was primarily detected at southerly
229  receivers but spent some time around northerly receivers in early 2017. Depth time series were

230  variable and included extended periods (>1 week) with limited change alongside movements

11
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231  from a maximum depth (=150 m) into shallower water and extensive transitions between
232 shallow (<50 m) and deep (>200 m) areas (Figure S2).
233
234  2.3.2. Main analyses
235
236  In our main analyses (A3), algorithms were successfully implemented (A3.1) for most
237  individuals/months (Figure S13). The success rate was high for the heuristic algorithms (98—
238 100 %). In the particle algorithms, the convergence rate was high for the AC algorithm (100
239 %), but lower in the DC (79 %) and ACDC (85 %) algorithms.
240
241  Estimated UDs (A3.2.1) largely concentrated within the MPA but differed among algorithms
242 (Figures 3-4 and S14-18). Of the two heuristic algorithms, the COA algorithm generally
243  produced highly restricted UDs that concentrated around southerly receivers, although maps
244 for two individuals (25 and 28) spanned a larger area (Figure S14). UDs from the RSP
245  algorithm similarly centred in this region, but were more spread out (Figure S15). As for the
246  COA algorithm, RSP UDs were driven by receiver locations. Maps for individuals detected
247  around southerly receivers (e.g., 35) were unaffected by the temporal pattern of detections
248  (Figures S2 and S15).
249
250  Particle algorithms indicated more nuanced movement patterns (Figures 3 and S16-18). In the
251  AC algorithm, most UDs spanned the southern receivers (where detections occurred) but were
252  more diffuse and not exclusively centred on receivers (Figure S16). These patterns reflect array
253  design, detection gaps and individuals’ capacity to move away from receivers. Some UDs
254  suggest movement into receiver gaps in the array’s centre, fished zones and/or further south

255  (beyond MPA boundaries). UDs from the DC algorithm exhibited both similarities and distinct

12
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256  features in the absence of acoustic constraints, the latter including hotspots in shallow to deep
257  water south of the MPA (Figure S17). ACDC-derived UDs integrate features of AC and DC
258  maps. Compared to the AC algorithm, maps were more concentrated within the MPA but also
259  exhibited a redistribution of probability mass beyond MPA boundaries associated with the
260  depth information (Figure S18). For both males and females detected around southerly
261  receivers, the maps suggest notable movements to habitat patches beyond the MPA (especially
262  off the Isle of Mull and north-western Jura). There are also indications of movements further
263  north (including in the deep water off Morvern and beyond the MPA up Loch Linnhe). (For
264  place names, see Figures 1/4.)

265

266  Within the MPA, our maps broadly align with skate presence records from angling (A3.2.2),
267  which concentrates in this region (Figure 4). Potential movements beyond the MPA are poorly

268  represented in angling records.

13
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277  Figure 4. An overall utilisation distribution for modelled skate, reconstructed by the
278  ACDC algorithm. Colours represent the probability that a modelled individual was located in
279  agiven cell at a randomly chosen time (within the analysed time series). The region containing
280 95 % of the probability mass is delineated by the black contour. Zones open/closed to fisheries,
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281  tagging locations (3%), receivers (x) and locations where skate have been captured by anglers

282 () are marked.

283

284  In line with UDs, residency estimates (A3.2.3) were high in the MPA but differed among
285  algorithms (Figure 5). Detection day (DD) proportions varied from 0.07-0.94 (median = 0.48).
286  As in simulations (Figures 2 and S8), heuristic residency estimates were consistently low in
287  open zones (median = 0.05) and high in closed areas (median = 0.88) and the MPA as a whole
288  (median = 0.93). These estimates were relatively insensitive to differences in detection patterns
289  among individuals (Figure S2). Particle algorithm estimates were somewhat higher in open
290  zones and lower in closed zones and the entire MPA. In the AC algorithm, residency ranged
291  between 0.01-0.45 (median = 0.10) in open zones, 0.32—0.95 (median = 0.78) in closed zones
292  and 0.68-0.97 (median = 0.90) in the entire MPA. In the absence of acoustic constraints, DC
293  algorithm estimates were more variable, though median residency estimates were similar (0.04,
294  0.80 and 0.88). Median estimates from the ACDC algorithm were also broadly similar, ranging
295  from 0.05 in open zones to 0.88 in closed zones and 0.92 in the entire MPA. Given limited data,
296  seasonal trends in residency are unclear, although it is notable that ACDC residency estimates

297  are broadly elevated in open areas over winter (when commercial fishing is permitted).

298
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300 Figure 5. Residency of tagged skate in the MPA. Panels show individual residency time
301  series for a given management area (row) and algorithm (column). The terms ‘Open’, ‘Closed’
302  and ‘Protected’ refer to zones within the MPA that are open or closed to fisheries and the entire
303  MPA. Residency is the expected proportion of time spent in each area (in a given month). Thick
304  points/lines are best-guess residency estimates; thinner points/lines are estimates from other
305  algorithm parameterisations (sensitivity analysis). Estimates are only shown for months with
306  sufficient data (hence gaps in some time series). Within panels, the feature of interest is the
307  overall spread of estimates (rather than individual trajectories). Horizontal lines are null model
308  estimates.

309

310 2.3.3. Sensitivity analyses

311

312  Inreal-world sensitivity analyses (A4), particle algorithm implementation success (A4.1) was

313  affected by algorithm parameterisation (Figure S13). Convergence rates were highest in AC
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314  algorithm implementations (98—100 %) and lowest in DC algorithm implementations (6783
315  %). Lower convergence was associated with both restricted and flexible parameterisations.
316
317  Inthe UD analysis (A4.2.1), maps produced by different model parameterisations were broadly
318  similar but differed in detail (Figure S19). As in simulations (Figures S3 and 5-6), heuristic
319  algorithm UDs were largely unaffected by tuning parameters (Figure S19). In the AC
320  algorithm, restrictive parameterisations generally concentrated maps and flexible
321  parameterisations spread them out (Figure S19). DC algorithm sensitivity was more complex
322  and included contractions, expansions and shifts in the distribution of hotspots. In the ACDC
323  algorithm, restrictive and flexible parameterisations generally concentrated/expanded patterns
324  of space use, weakening/strengthening the relative importance of habitat patches beyond the
325 MPA, respectively (Figure S19). Where convergence was achieved, the restrictive depth
326  observation model parameterisation in particular strengthened patterns of space use within the
327  MPA and dampened the apparent importance of habitats further south.
328
329 Residency estimates (A4.2.2) showed a similar degree of sensitivity to algorithm
330 parameterisation (Figure 5). Restrictive parameterisations were generally associated with
331  elevated residency estimates while flexible parameterisations were associated with reduced
332  estimates, especially in the DC algorithm. However, median residency estimates remained
333  remarkably stable. In the ACDC algorithm, median estimates, accounting for all algorithm
334  parameterisations, were 0.05 (in open zones), 0.87 (in closed zones) and 0.93 (in the entire
335 MPA).
336
337 3. Discussion

338
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339  This study sets a new state-of-the-art in animal tracking for conservation with underwater
340  Dbiotelemetry, building on decades of valuable work in this field. We reveal particle algorithms
341  as a powerful methodology that can strengthen analyses of space use and residency, while
342  addressing the limitations of long-established heuristic methods. Our analyses show that
343  particle algorithms achieve substantial improvements in accuracy and precision, while heuristic
344  algorithms can be difficult to tune, insensitive to the temporal pattern of detections and exhibit
345 marked variation in performance. For the Critically Endangered flapper skate, particle
346  algorithms suggested concentrated patterns of space use within an MPA, including time spent
347  beyond receivers in zones that are open to fishing, as well as movements beyond MPA
348  boundaries—significantly extending work on this and related species, with important
349  implications for species conservation®?2%3°, While heuristic methods have been valuable
350 components of the animal-tracking toolbox!7?!22, vparticle algorithms provide a
351  probabilistically sound statistical methodology that is sufficiently fast, flexible and accessible
352 to meet the challenges of many modern animal-tracking datasets. We encourage their

353  application to analyses of species’ movements and MPA efficacy across aquatic ecosystems®°,

354

355  We developed a simulation analysis to calibrate heuristic algorithms and evaluate algorithm
356  performance and sensitivity. For heuristic algorithms, previous studies have typically relied on
357  default values?? or subjective judgement®® to set tuning parameters, such that variation in
358  algorithm performance and sensitivity is poorly documented!®. In our study system, for the
359 COA algorithm, we found that a setting of AT =2 days was marginally better than other
360  settings, while for the RSP algorithm there was no optimal choice for the distance-error
361 (er.ad) parameter on average. This insensitivity appears reassuring, but it calls into question
362  the relevance of tuning parameters and their ability to envelop the movement and detection

363  processes that generate observations, upon which the utility of heuristic methods rests!”-1°,
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364

365  Our simulations revealed a clear ranking of algorithms for estimating patterns of space use and
366  residency. Performance of the two heuristic algorithms was similar but highly variable:
367  simulated patterns were captured well in some instances and poorly in others. In residency
368  analyses, the widely used ‘detection days’ metric underestimated residency in the MPA, in line
369  with the limited movement capacity of simulated individuals (which could linger within the
370  MPA but beyond receivers). Meanwhile, heuristic algorithms (which restrict positional
371  estimates within receiver arrays, even if individuals move further afield) overestimated
372  residency by a median 12 % (standard error =~ 22 %). These results are specific to our study
373  system but pertinent for many real-world arrays, where behaviour of prevailing analytical
374  methods remains understudied'”"”.

375

376  Compared to heuristic methods, particle algorithms produced more accurate insights into space
377 use and residency. There were clear benefits of data integration, with depth observations
378  refining movements in the AC algorithm and acoustic observations helping to localise
379  movements to relevant regions in the DC algorithm (which otherwise sometimes misplaced
380 individual hotspots). Overall, residency was accurately estimated within a standard error of 7.6
381 (AC), 3.7 (DC) and 2.8 (ACDC) %. This quantification of ‘array precision’ should become an
382  effective means to evaluate and improve monitoring programmes in future (Lavender et al., in
383 prep). In this study, simulations suggest that data integration enabled up to three-fold
384  improvements in estimates of space use and residency (lower mean error, higher precision).
385  We anticipate considerable opportunities to extend this kind of analysis in other systems to
386 evaluate (a) existing arrays, (b) alternative array designs and (c) the number of receivers
387  required to estimate metrics of interest with a specified degree of accuracy (Lavender et al., in

388  prep).
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389

390 The above simulation results were broadly robust to algorithm parameterisation. Heuristic
391  algorithms were highly insensitive to algorithm parameterisation, but even particle algorithms
392  were generally robust to mis-specification of individual parameters (such as the maximum
393  movement speed), given the presence of other constraints (such as detection range)'®. The DC
394  algorithm showed the greatest sensitivity, as expected given the absence of acoustic constraints
395  and the heterogenous distribution of depth habitats in our study system. In other study systems,
396  we recommend that studies leveraging multiple datasets conduct similar analyses to examine
397  algorithm sensitivity*!.

398

399  Our real-world analyses of flapper skate showcase significant enhancements in the use of
400 acoustic telemetry for mobile species conservation. Within the MPA we study, we found that
401  heuristic methods produced limited maps of space use that were driven by receiver positions
402  (and insensitive to the temporal pattern of detections), while particle analyses indicated specific
403  habitat patches in-between receivers that appear to be important, filling gaps in angling records
404  and detection analyses2. The drivers of movement within these regions are unclear, but depth,
405 temperature, light, sediment and/or prey preferences may play a role, as shown for other
406  elasmobranchs*’. A wide range of studies have linked detection patterns to habitat selection*>#*
407  and this is an important next step in our research. By probabilistically representing individual
408 movements, particle algorithms have clear potential to strengthen habitat-selection analyses
409 and support the identification of sites, within and beyond MPAs, that may benefit from
410  conservation measures*>46,

411

412  Within the MPA, our algorithms also suggested movements beyond receivers into fished zones.

413  Given the sensitivity of elasmobranchs to trawling>2°, this result is potentially concerning and
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414 suggests further analyses of skate—fisheries interactions in our study area are warranted. Further
415  afield, we recognise that many MPAs contain fished zones where receiver deployments are
416  limited by fishing activity’. The capacity to investigate movements into these zones is an
417  important development for quantifying the trade-offs between species conservation and
418  extractive activities. This should inform marine spatial planning in many regions*’.
419
420 By integrating tagging and tracking datasets with prior knowledge of species movement, we
421  were also able to estimate individual residency at spatial scales relevant to management,
422  notwithstanding limited receiver coverage. For analysed skate, our algorithms indicate a
423  remarkably high degree of residency in the MPA. Earlier analysis of residency indices indicated
424 that skate can spend weeks at a time around receivers3? but robust estimates of residency for
425  flapper skate (and other mobile species) in regions with incomplete receiver coverage have
426  remained elusive. In this study, we found the commonly used ‘detection days’ metric!” variable
427  and poorly indicative of residency. Meanwhile, heuristic algorithms indicated consistently high
428  MPA-scale residency across individuals, irrespective of detection gaps. Properly accounting
429  for movements during detection gaps is a significant step forward in studies of the efficacy of
430  MPAs for mobile species. For flapper skate, our best (ACDC) median residency estimate is 92
431 %, suggesting that the MPA is sufficiently large to protect analysed skate for much of the year.
432  This result is robust to algorithm parameterisation. This work strengthens the evidence that
433 MPAs can be effective conservation measures for mobile species and supports the use of
434  permanent, rather than seasonal, fisheries closures for flapper skate and other species that
435  display similar movement patterns®3%3°, However, fisheries closures should be accompanied
436 by wider fisheries management measures to protect individuals that exhibit weaker site
437  affinity?'.

438
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439  We also documented evidence for movements into specific habitat patches beyond MPA
440  boundaries that may warrant protection. For flapper skate, these include an area of moderately
441  deep (>100 m) water off Jura and a shallow (50 m) sandy—muddy habitat off the Isle of Mull
442  that is bounded by a deeper (100 m) trench (punctuated by subsurface rocks). It is tantalising
443  to notice characteristics of an egg nursery in this location’”. Currently, the only known flapper
444  skate nursery is in the Red Rocks and Longay MPA (further north). While sample size is
445  limited, we found no strong evidence for movements towards Red Rocks, so the search is on
446  to determine where flapper skate using the MPA lay eggs®’. The identification of essential fish
447  habitats is crucial for mobile species conservation and a key objective of many telemetry
448  studies, including our own work*. The unique capacity of our algorithms to facilitate this
449  research, via the identification of specific habitats beyond receivers that are used by tagged
450  animals, is a useful step forward. This should support the establishment of connected MPA

451  networks for mobile species*.

452

453  Improving the movement and observation models we use to model underwater biotelemetry
454  data is an important task for future research. Our skate movement model would be informed
455 by additional (e.g., accelerometer) data on individual behaviour and swimming speeds. Multi-
456  sensor tags hold considerable promise for this in future and should be leveraged by other
457  studies!!. Our acoustic observation model would also be improved with additional (sentinel)
458  tag deployments and expanded detection range testing. Such data are widely collected and
459  should be incorporated in analyses*®. In our study system, improvements to the depth
460  observation model are a priority: in sensitivity analyses, different model parameterisations
461  affected the localisation of hotspots within the MPA and the relative importance of habitat
462  patches further afield. The key knowledge gap is the extent to which flapper skate exhibit

463  benthic versus pelagic behaviour. In rugged bathymetric landscapes, fish behaviour affects the

23


https://doi.org/10.1101/2025.02.13.638042
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.02.13.638042; this version posted February 17, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Particle algorithms for conservation

464  locational information provided by depth observations and the ease with which particle filters
465  converge. In this study, we attribute convergence failures to potential inadequacies in the depth
466  observation model and the difficulty of finding valid routes through a bathymetric maze. In
467  complex environments, particle algorithms may struggle and discretisation of the state-space
468  for filtering® or tempered Hamiltonian Monte Carlo®® may be required. For flapper skate and
469  other aquatic species, continued tagging and monitoring, coupled with further analytical
470  development in these directions, will support improved analyses in years to come.

471

472  This work has significant implications for the spatial management of mobile species. By
473  integrating animal movement modelling and electronic tagging and tracking data, we reveal
474  how particle algorithms can represent movements beyond receivers, refine maps of space use
475  and improve residency estimates. These developments enhance the value of biotelemetry data
476  for mobile species conservation, informing MPA placement, size and management®. Our case-
477  study analyses of flapper skate provide a concrete example: confirming the value of fisheries
478  restrictions in an existing MPA; indicating patterns of habitat use; quantifying movements into
479  fished zones; and highlighting specific habitats beyond the MPA that may warrant protection.
480 These insights into space use, residency in regions of interest and unprotected habitats beyond
481  receivers represent great steps forwards for aquatic conservation**. That being said, model
482  precision remains dependent on data quality and algorithm-informed study design may be
483  beneficial moving forward. This work should support the conservation of flapper skate and

484  other threatened species across the globe!%40,

485
486  Particle algorithms have potential applications beyond spatial management. Acoustic telemetry
487  and biologging are expanding rapidly'>'6. With the growth of international telemetry networks,

488  the spatial scale over which animals can be tracked is also widening. Analyses of telemetry
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489  data require statistical models that accurately reconstruct movements and represent uncertainty.
490  Our integrative modelling framework is thus well-placed to strengthen research across the
491  biotelemetry sphere, from ecological analyses of individual movements** through to the
492  conservation objectives addressed in this paper®’. We foresee opportunities to refine habitat
493  selection analyses*®, investigate co-occurrence patterns’’ and support animal-borne
494  oceanography’?, fisheries management’?, climate change mitigation*, habitat restoration®> and
495  impact assessments>®. The methods are relevant for research projects across disparate
496  systems!>'® and have the potential to support progress towards strategic objectives, such as
497  Sustainable Development Goal 14%°, We hope that this study encourages advances towards this
498  goal in the second half of the United Nations Decade of Ocean Science for Sustainable
499  Development.
500
501 4. Methods
502
503 4.1.  Study system
504
505 We selected a 14,000 km? case-study system in Scotland (Figure 1). The bathymetry
506  encompasses shallow-water platforms, deep basins and channels up to 350 m in depth. Within
507 the site, the Loch Sunart to the Sound of Jura MPA spans 741 km? and a depth range of 0-290
508 m. Current management prohibits commercial fishing except in eight, seasonally (October—
509 March) fished zones. For further description, including bathymetric data sources, see
510  Supporting Information §1 and Table S1.
511
512  From 2016-17, a passive acoustic telemetry system comprising 58 Vemco receivers was

513  established in part of the MPA 3. Skate were captured in the same area and tagged with acoustic
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514  transmitters and archival (depth) tags®. For full details, including array and tag properties, see
515  Supporting Information §2.
516
517 4.2.  Workflow
518
519  We conducted simulation-based and real-world analyses of animal movements (see Table S2
520  for an overview and §4.3-4 for details). In each analysis, we analysed movements using two
521  heuristic algorithms (COAs and RSPs) and our particle algorithms. The workflow comprised
522  three stages: (a) coordinate estimation, (b) mapping and (c) residency estimation, which are
523  explained in general terms in §4.2.1-3 before the details of our analyses. Algorithms were
524  implemented in R, v.4.3.1°7, using the patter?® and RSP?? packages. All code is available
525  online®,
526
527 4.2.1. Coordinate estimation
528
529  COAs. The first algorithm we used to estimate coordinates for mapping was the COA
530 algorithm. This estimates coordinates as weighted averages of receiver locations where
531  detections were recorded over sequential time intervals (duration: AT). We selected three AT
532  wvalues (an ‘optimal’ value, a restrictive value and a more flexible value) to examine algorithm
533  performance and sensitivity (see §4.3).
534
535 RSPs. The RSP algorithm interpolates coordinates along the shortest paths between the
536  receivers. We used the default settings for tuning parameters except er.ad, which tunes
537  coordinate weights for mapping. As above, we selected three values by simulation (see §4.3).

538  For implementation details, see Supporting Information §3.
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539

540  Particle algorithms. We also implemented the acoustic-container (AC), depth-contour (DC)
541  and acoustic-container depth-contour (ACDC) particle filtering—smoothing algorithms'®. To
542  implement these algorithms, we formulated a Bayesian state-space model (SSM) for the
543  location (strictly ‘state’) s; of an individual through time (t € {1, 2, ..., T}), given the (acoustic
544  and archival) observations (y,.r), that is, f(s;.7| ¥1.7). Our SSM represents an underlying
545  behavioural switching movement process that includes a ‘low activity’ state (encompassing
546  resting) and a more active state. Movements are connected to acoustic observations (detections,
547  non-detections) by a Bernoulli observation model in which detection probability declines
548 logistically with distance from receivers. The depth observation process is described by a
549  truncated Gaussian distribution centred on the seabed (capturing skate’s benthic lifestyle) with
550 a variance accounting for observational and bathymetric uncertainty. For the model
551  formulation, see Supporting Information §4.1 (mathematics), Table S3 (notation summary) and
552  Figure S1 (visualisation). We considered a ‘best-guess’ parameterisation as well as a restrictive
553 and flexible parameterisation for the movement and observation sub-models. SSM
554  parameterisations were based on prior research, domain knowledge and a literature review. See
555  Supporting Information §4.2-3 (for details) and Table S4 (for a summary of parameter values).
556

557  Particle filtering and smoothing algorithms perform model inference for the SSM, targeting the
558  marginal distribution f(s; | y;.7). The distribution of individual locations is approximated by
559  a Monte Carlo simulation of N weighted particles, which represent candidate positions of the
560 individual. In the particle filter, a movement model simulates particle movement from one time
561 step to the next; observation models weight particles in line with their compatibility with the
562  data; and a resampling step duplicates or eliminates particles accordingly. The AC, DC and

563  ACDC algorithms differ only in the data incorporated during this process (acoustic, depth or
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564  both datasets). The number of particles is a trade-off between speed and convergence: sufficient
565  particles are required to ensure that at least some particles are compatible with the data at every
566 time step. After subsequent particle smoothing, the result is a set of particles that approximate
567  f(s; | y..r). For implementation details, see Supporting Information §4.4.
568
569 4.2.2. Mapping
570
571  For COAs and particle algorithms, we generated maps of space use, i.e., utilisation distributions
572  (UDs), by kernel smoothing estimated coordinates®®. For the RSP algorithm, a dynamic
573  Brownian-bridge movement model is used to smooth coordinates??. For implementation
574  details, see Supporting Information §5.
575
576  4.2.3. Residency
577
578  Alongside UDs, we estimated the proportion of time spent in selected areas (i.e., residency).
579  We considered residency in our study system in three areas: zones (a) open and (b) closed to
580 fisheries and (c) the entire MPA. Residency was estimated as the proportion of (i) UD volume
581  (for heuristic algorithms) or (ii) resampled particles (for particle algorithms) in each area. We
582  also considered (iii) the proportion of days with detections in each area (a standard metric) for
583  comparison.
584
585 4.3. Simulation-based analysis
586
587  Our first analysis was a simulation-based analysis (see Table S2 for the overview). In this

588  analysis, we simulated individual movements and corresponding observations in our study
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589  system and reconstructed patterns of space use using COAs, RSPs and particle algorithms. We
590 used simulation results to calibrate heuristic algorithms for real-world analyses, evaluate
591  algorithm performance and sensitivity, and validate the use of particle algorithms for later
592  analyses (see §4.4). Full details are available in Supporting Information §6.
593
594  In outline, we simulated movements from ‘tagging locations’ within the study area for 100
595  hypothetical flapper skate over a one-month period, according to our best-guess skate
596 movement model (see Supporting Information §6.1). For each movement path, we simulated
597  acoustic and depth observations, following best-guess models for the aforementioned acoustic
598  and depth observation processes. For each path, we generated a ‘true’ UD via kernel smoothing.
599  Residency was calculated as the proportion of path steps in each area. Using the simulated
600 datasets, we assessed the performance and sensitivity of algorithms applied to simulated
601  observations in terms of how well they recovered path UDs and residency (see Supporting
602  Information §6.2-3). In the following description, we label performance and sensitivity
603 analyses as ‘Al’and ‘A2’ respectively. Analytical steps are labelled in the same way (as A 1.1,
604  Al.2, etc.), following Table S2.
605
606 Inperformance analyses, we evaluated the skill with which algorithms reconstructed simulated
607  patterns of space use and residency (A1). This analysis included a null model (uniform UD,
608 excluding land) alongside heuristic and particle algorithms parameterised with optimal or best-
609  guess parameters (Al.1). For heuristic algorithms, a simulation approach was used to select
610 optimal parameter values: for each path, we computed the mean absolute error (ME) between
611 the UD for each simulated path and reconstructed UDs for a range of candidate parameter
612  values and identified the parameter value with the lowest ME on average (A1.1.1). Particle

613  algorithms were parameterised according to the data-generating processes (A1.1.2). Heuristic
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614  algorithms were implemented for each acoustic time series and particle algorithms (AC, DC
615 and ACDC) were implemented for each (a) acoustic, (b) depth and (c) combined dataset,
616  respectively (A1.2). We then evaluated algorithm performance (A1.3) by visually comparing
617  simulated and reconstructed UDs for three selected paths (A1.3.1), the distribution of ME
618  between all simulated and reconstructed UDs (A1.3.2) and the distribution of residency error
619  (estimated residency minus true residency) between simulated and reconstructed patterns, by
620  algorithm (A1.3.3). Residency error was quantified for the null model and the detection days
621  metric (as benchmarks), as well as the heuristic and particle algorithms.
622
623 In sensitivity analyses, we used a subset of paths (1-3) to explore algorithm sensitivity (A2).
624 In this analysis, we re-implemented the algorithms with restrictive and flexible
625  parameterisations (A2.1). For the particle algorithms (which are stochastic), we ran each
626  algorithm implementation three times to examine reproducibility. We then analysed algorithm
627  sensitivity and reproducibility (A2.2) by visualising patterns of space use (A2.2.1), ME
628 (A2.2.3) and residency error (A2.2.3) for each algorithm parameterisation/implementation.
629
630  For our study area, the simulation analyses (a) confirmed that particle algorithms outperform
631  heuristics, (b) revealed algorithm sensitivity and (c¢) demonstrated that stochastic particle runs
632  produce consistent results. By visually comparing maps between AC, DC and ACDC
633  algorithms, we also gauged the relative importance of acoustic and/or depth datasets in refining
634  maps of space use.
635
636 4.4. Real-world analyses

637
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638 In real-world analyses (A3-4), we analysed movement patterns of tagged skate (Figure S2,
639  Table S5). Data were sourced from a study of 42 individuals tagged with acoustic and archival
640 tags (33 of which were detected)®?. We selected 13 individuals (30 %) with sufficient data for
641  analysis. (For data processing, see Supporting Information §7.1.) For each individual, we
642  analysed movements over each month using (a) the acoustic data, (b) the depth data and (c) the
643 combined data. We analysed 48 individual/month time series in total (1-14 months per
644  individual).
645
646  Following the simulation workflow (§4.3), for each individual, for each month, we analysed
647  data using heuristic algorithms (acoustic datasets only) and the particle algorithms (acoustic,
648  depth and combined datasets). In our main analyses (A3), each algorithm was implemented
649 once using optimal (heuristic) or best-guess (particle algorithm) parameters (A3.1). We
650 estimated UDs for each dataset (A3.2.1). We assessed similarities and differences among
651 individuals and algorithms visually, given limited data. UDs were aggregated (A3.2.2) to map
652  the overall pattern of space use and assess overlap with long-term (1975-2024) skate presence
653  angling records®. Residency was estimated as in simulations (A3.2.3). In sensitivity analyses
654  (A4), we re-implemented algorithms with restricted and flexible parameterisations (A4.1) and
655 analysed changes in UDs (A4.2.1) and residency (A4.2.2). For the overview, see Table S2. For
656  full details, see Supporting Information §7.2.
657
658  Data availability statement
659
660  Data are available from NatureScot and Marine Scotland Science. Code is archived on Zenodo

661  at https://doi.org/10.5281/zenodo.14805161%.
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