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Abstract 24 

 25 

The movements of aquatic animals affect their exposure to threats and the efficacy of 26 

conservation measures, such as Marine Protected Areas (MPAs). However, many species’ 27 

movements remain poorly understood and difficult to reconstruct from available datasets, 28 

hampering conservation efforts. This is especially the case for species that rarely surface, for 29 

which data are often limited to observations from acoustic telemetry (detections) and ancillary 30 

sensors, such as archival tags. Here, we pioneer the use of state-of-the-art particle algorithms 31 

to model animal movement, integrate datasets and assess MPA design, using a case study of 32 

the Critically Endangered flapper skate (Dipturus intermedius) in Scotland. Our algorithms led 33 

to 5-fold improvements in maps of space use and 30-fold improvements in residency estimates 34 

(lower mean error) compared to prevailing heuristic methods. By formally integrating tracking 35 

datasets, we were uniquely able to examine movements beyond receivers into fished zones, 36 

MPA-scale residency and specific habitats beyond protected areas that may warrant protection. 37 

This work showcases a probabilistically sound modelling framework that is sufficiently fast, 38 

flexible and accessible to meet the demands of modern animal-tracking datasets in acoustic 39 

telemetry systems. This represents a marked advance for analyses of animal movements and 40 

MPA efficacy worldwide.  41 

 42 
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1. Introduction  47 

 48 

Ocean biodiversity is increasingly threatened by anthropogenic activities, such as overfishing1. 49 

Since 1970, the Marine Living Planet Index has fallen by 56 %2. Many marine taxa have 50 

declined, especially in coastal ecosystems3. In some taxa, such as elasmobranchs (sharks, 51 

skates and rays), rates of decline are now critical4,5. There is a pressing need for research 52 

designed to inform conservation measures that can support these species and bend the curve of 53 

aquatic biodiversity decline6.  54 

 55 

Marine Protected Areas (MPAs) are an important conservation solution7. An effective MPA is 56 

a refuge that locally reduces the pressures to which individuals are exposed (especially fishing) 57 

and supports population recovery8. Designing MPAs for mobile species requires an 58 

understanding of animal movement, which shapes individual exposure to threats, hotspots of 59 

habitat use and residency in selected areas9. This requirement has motivated huge interest in 60 

animal electronic tagging and tracking10.  61 

 62 

Tagging and tracking technologies for aquatic species have proliferated in recent years11. For 63 

marine mammals and seabirds, satellite transmitters are widely used12,13. These tags 64 

periodically collect/transmit location data from which movement trajectories can be 65 

reconstructed using well-established statistical approaches14. However, for species that rarely 66 

surface, satellite tracking is limited and alternative technologies are required11. Passive acoustic 67 

telemetry systems are extensively deployed15. These use receiver arrays to detect individual-68 

specific acoustic transmissions of tagged animals when they move within range. Since array 69 

coverage is often limited, detections are usually sparse and may be considerably enhanced by 70 

ancillary datasets, such as archival (e.g. depth) observations16. However, integrating sparse 71 
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detections with ancillary datasets to reconstruct movement patterns (within and beyond 72 

receiver arrays) remains a substantial challenge that has significantly hampered the use of these 73 

data to inform MPA design.  74 

 75 

Heuristic methods currently dominate efforts to analyse movements in passive acoustic 76 

telemetry systems17–19. These methods use detections and apply summary statistics, tuning 77 

parameters and other heuristics to map space use around receivers17. For example, the centre-78 

of-activity (COA) algorithm computes weighted averages of the receiver locations where 79 

detections were recorded over sequential time intervals (of duration Δ𝑇)20,21. Similarly, the 80 

Refined Shortest Path (RSP) algorithm interpolates ‘relocations’ along the shortest paths 81 

between the receivers that recorded sequential detections, assuming distance-dependent 82 

interpolation errors (in line with a tuning parameter termed er.ad)22. Post-hoc smoothing is 83 

used to generate maps of space use or utilisation distributions (UDs). Residency indices (such 84 

as ‘detection days’ or the proportion of days with detections) have also been developed to 85 

quantify residency around receivers23. These methods have been subject to limited formal 86 

evaluation, but their limitations in sparse receiver arrays (where individual movements are 87 

uncertain) are acknowledged17–19.  88 

 89 

Recent developments in state-space modelling create major opportunities to move beyond 90 

heuristics and strengthen animal-tracking analyses for conservation19,24. In an animal-tracking 91 

context, a state-space model is a hierarchical framework that models an underlying movement 92 

process and the observation processes that connect movements to observations25. Until 93 

recently, state-space modelling routines for passive acoustic telemetry data were bespoke, 94 

computationally expensive and limited to detection data24,26,27. However, it is now possible to 95 

fit state-space models that integrate detections and diverse ancillary datasets (from sensor 96 
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measurements to mark-recapture events) using particle filtering–smoothing algorithms19,28. As 97 

examples, this paper considers algorithms that incorporate acoustic observations, depth 98 

observations, or both sets of observations simultaneously, i.e., the acoustic-container (AC), 99 

depth-contour (DC) and acoustic-container depth-contour (ACDC) algorithms19. These 100 

algorithms represent an individual’s possible location probabilistically with a set of weighted 101 

samples, termed ‘particles’. A simulation study showed that particle algorithms consistently 102 

outperform heuristic methods, generating refined maps of space use and residency estimates 103 

for entire regions of interest, such as MPAs19. However, particle algorithms have yet to be 104 

exploited to inform MPA design in any real-world system.  105 

 106 

Here, we pioneer the application of particle algorithms for conservation with a case study of 107 

the Critically Endangered flapper skate (Dipturus intermedius) (Figure 1). This is a large-108 

bodied, largely benthic species that occupies habitats from 0–1200 m deep in north-western 109 

Europe29. Once decimated by overfishing30, flapper skate remain vulnerable as bycatch31. In 110 

2014, the Loch Sunart to the Sound of Jura MPA was designated for flapper skate in Scotland 111 

and acoustic/archival tagging were later undertaken for monitoring32–34. Preliminary analyses 112 

demonstrated that skate exhibit localised movements within the MPA32,35,36. However, key 113 

conservation questions pertaining to MPA efficacy—including the use of seasonally fished 114 

zones beyond receivers, the extent to which skate remain in the MPA in detection gaps and the 115 

suitability of MPA boundaries—remained poorly addressed, given incomplete receiver 116 

coverage. Movements beyond the MPA, and connectivity to the only known egg nursery (in 117 

the Red Rocks and Longay MPA), also remained poorly understood37. Such knowledge gaps 118 

are pervasive among studies reliant upon sparse receiver arrays38,39 and highlight the need for 119 

statistical tools that can enhance the conservation of mobile aquatic species.  120 

 121 
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Combining simulations and real-world analyses, this study showcases how particle algorithms 122 

can reveal marked improvements in maps of space use, residency in regions beyond receivers, 123 

MPA suitability and specific habitats beyond MPA boundaries where additional protection may 124 

be warranted. By comparing maps based on acoustic and/or archival data, we also quantify the 125 

contributions of different datasets, providing valuable information for monitoring programmes. 126 

This work provides a basis to strengthen the use of movement data for mobile species 127 

conservation across the globe.  128 

 129 
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 130 

Figure 1. A case-study system. The inset shows the location of the study system in the United 131 

Kingdom. The main panel shows study area. The coloured polygons mark the boundary of the 132 

Loch Sunart to the Sound of Jura MPA. This includes zones that are open (blue) and closed 133 

(red) to fisheries. Tagging locations (✵), receivers (x) and bathymetric contours are marked. 134 

For spatial data sources, see Supporting Information §1 and Table S1.  135 

 136 

2. Results 137 
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 138 

2.1. Overview 139 

 140 

We conducted simulation-based and real-world analyses of animal movements in relation to an 141 

MPA using two heuristic algorithms (COAs and RSPs) and three particle filtering–smoothing 142 

algorithms (AC, DC and ACDC) (Figures 1 and S1). In simulation analyses (labelled A1 and 143 

A2), we evaluated algorithm performance (A1) and sensitivity (A2). In real-world analyses 144 

(A3 and A4), we modelled electronic tagging and tracking data from flapper skate (Figure S2). 145 

Table S2 provides the overview and a labelling hierarchy for analyses (A1, A1.1, etc.).  146 

 147 

2.2. Simulation analysis 148 

 149 

2.2.1. Performance analyses 150 

 151 

In simulation analyses of algorithm performance (A1), particle algorithms reproduced the 152 

utilisation distributions (UDs) and residency patterns exhibited by 100 simulated paths with 153 

impressive accuracy and precision, while the performance of prevailing heuristic methods 154 

varied. Heuristic algorithms were calibrated for the analysis by quantifying the mean absolute 155 

error (ME) between ‘true’ and reconstructed UDs across a range of candidate parameter values 156 

(A1.1.1). For the COA algorithm an optimal setting of Δ𝑇 = 2 days was identified (Figure S3). 157 

For RSPs, ME weakly declined with increasing distance-error (er.ad) values but there was 158 

no winning choice of er.ad on average. We selected er.ad = 500 m as an ‘optimal’ 159 

compromise between ME and implementation success (Figure S3). Particle algorithms were 160 

parameterised following the data-generating movement and observation processes used to 161 

simulate paths, based on prior research, domain knowledge and a literature review (see 162 
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Methods). All algorithms were successfully implemented (A1.2) for all simulated paths (Figure 163 

S4).  164 

 165 

In a visual analysis of UDs for a subset (1–3) of simulated paths (A1.3.1), we found that 166 

heuristic UDs were moderately accurate but surpassed by those from particle algorithms 167 

(Figures S5–6 versus S7). Both heuristic algorithms effectively reconstructed the extent of 168 

movements for Path 3 (for which movements were localised around receivers), but 169 

underestimated those for Paths 1 and 2 (which included movements to different areas) (Figures 170 

S5–6). Hotspot placement was partially correct (Figures S5–6). Particle algorithms represented 171 

simulated patterns more accurately (Figure S7). 172 

 173 

Across all 100 simulated paths, a clear ranking of algorithms emerged from analysis (A1.3.2) 174 

of the ME in UD estimation (Figure 2A). All algorithms outperformed the null model on 175 

average. Performance of the two heuristic algorithms was similar and varied substantially 176 

across repeated realisations of the same data-generating-processes (occasionally overlapping 177 

with the null model). Particle algorithms consistently outperformed the heuristic algorithms—178 

with median MEs, and standard deviations in ME, 2.7–5.0 and 1.7–3.6 times lower, 179 

respectively. For particle algorithms, the ranking was DC, AC and ACDC (best). Compared to 180 

the AC and DC algorithms, median ME for the ACDC algorithm was 1.6–1.8 times lower.   181 

 182 

Algorithm ranking for residency estimation (A1.3.3) was similar (Figures 2B and S8). The null 183 

model consistently underestimated residency. The proportion of days with detections (DD) 184 

benchmark also underestimated residency, while heuristic algorithms overestimated residency, 185 

except in open areas where receivers were absent. For heuristic algorithms, median residency 186 

error for the MPA was 12 % (standard error ≈ 22 %). Particle algorithms performed better, 187 
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estimating residency in the MPA with a median error below 1 % and a precision (standard error) 188 

of 7.6 (AC), 3.7 (DC) and 2.8 (ACDC) %. These statistics represent >30-fold improvements in 189 

residency error and 2.8–8.3-fold improvements in precision compared to heuristic algorithms.   190 

 191 

 192 

Figure 2. Algorithm performance for estimating (A) utilisation distributions and (B) 193 

residency. Violins show the distribution of error across 100 simulated paths. See text for 194 

abbreviations. For the full figure, see Figure S8.  195 

 196 

2.2.2. Sensitivity analysis 197 

 198 

The sensitivity analyses (A2) revealed algorithm sensitivity to mis-specification. We 199 

reimplemented algorithms with more restrictive and flexible parameterisations and examined 200 

variation in performance. Heuristic algorithms were successfully re-implemented for all 201 

simulated paths (A2.1). For particle algorithms, parameter mis-specification was associated 202 

with convergence failures (Figure S4). The restrictive depth observation model, which 203 

underestimated the amount of error in the depth observations, was particularly problematic. 204 

However, multiple independent runs of the particle filter facilitated convergence in some 205 

simulations.      206 
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 207 

Patterns of space use and residency estimates (A2.2) were relatively robust to algorithm 208 

parameterisation. The visual analysis (A2.2.1) revealed consistency in UDs between algorithm 209 

parameterisations (Figures S5–6 and S9–10). For heuristic algorithms, more flexible 210 

parameterisations produced more diffuse maps, but differences were small (Figures S5–6). For 211 

the particle algorithms that converged, maps were relatively robust to the degree of parameter 212 

mis-specification we explored (Figures S9–10). The main exception to this was mis-213 

specification of the depth observation model (in the DC and ACDC algorithms), which affected 214 

the distribution of hotspots and patterns of space use (Figure S9). Particle-based maps were 215 

highly reproducible (Figure S10). Analyses of UD ME (A2.2.2) and residency (A2.2.3) 216 

produced similar results (Figures S11–12).  217 

 218 

2.3. Real-world analysis  219 

 220 

2.3.1. Observations  221 

 222 

Real tracking data from modelled skate exhibited diverse patterns (Figure S2). The number of 223 

detections per individual/month varied from 43–8887 (median = 1152). Some individuals were 224 

detected regularly while others went undetected for longer periods (up to 25 days). Most 225 

individuals were only detected around southerly receivers. The two exceptions were individual 226 

25 (a mature female), which moved between southern and northern receivers over a 14-month 227 

period, and individual 28 (an immature female), which was primarily detected at southerly 228 

receivers but spent some time around northerly receivers in early 2017. Depth time series were 229 

variable and included extended periods (>1 week) with limited change alongside movements 230 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 17, 2025. ; https://doi.org/10.1101/2025.02.13.638042doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.13.638042
http://creativecommons.org/licenses/by/4.0/


Particle algorithms for conservation 

 12 

from a maximum depth (≈150 m) into shallower water and extensive transitions between 231 

shallow (<50 m) and deep (>200 m) areas (Figure S2).  232 

 233 

2.3.2. Main analyses 234 

 235 

In our main analyses (A3), algorithms were successfully implemented (A3.1) for most 236 

individuals/months (Figure S13). The success rate was high for the heuristic algorithms (98–237 

100 %). In the particle algorithms, the convergence rate was high for the AC algorithm (100 238 

%), but lower in the DC (79 %) and ACDC (85 %) algorithms.  239 

 240 

Estimated UDs (A3.2.1) largely concentrated within the MPA but differed among algorithms 241 

(Figures 3–4 and S14–18). Of the two heuristic algorithms, the COA algorithm generally 242 

produced highly restricted UDs that concentrated around southerly receivers, although maps 243 

for two individuals (25 and 28) spanned a larger area (Figure S14). UDs from the RSP 244 

algorithm similarly centred in this region, but were more spread out (Figure S15). As for the 245 

COA algorithm, RSP UDs were driven by receiver locations. Maps for individuals detected 246 

around southerly receivers (e.g., 35) were unaffected by the temporal pattern of detections 247 

(Figures S2 and S15).  248 

 249 

Particle algorithms indicated more nuanced movement patterns (Figures 3 and S16–18). In the 250 

AC algorithm, most UDs spanned the southern receivers (where detections occurred) but were 251 

more diffuse and not exclusively centred on receivers (Figure S16). These patterns reflect array 252 

design, detection gaps and individuals’ capacity to move away from receivers. Some UDs 253 

suggest movement into receiver gaps in the array’s centre, fished zones and/or further south 254 

(beyond MPA boundaries). UDs from the DC algorithm exhibited both similarities and distinct 255 
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features in the absence of acoustic constraints, the latter including hotspots in shallow to deep 256 

water south of the MPA (Figure S17). ACDC-derived UDs integrate features of AC and DC 257 

maps. Compared to the AC algorithm, maps were more concentrated within the MPA but also 258 

exhibited a redistribution of probability mass beyond MPA boundaries associated with the 259 

depth information (Figure S18). For both males and females detected around southerly 260 

receivers, the maps suggest notable movements to habitat patches beyond the MPA (especially 261 

off the Isle of Mull and north-western Jura). There are also indications of movements further 262 

north (including in the deep water off Morvern and beyond the MPA up Loch Linnhe). (For 263 

place names, see Figures 1/4.) 264 

 265 

Within the MPA, our maps broadly align with skate presence records from angling (A3.2.2), 266 

which concentrates in this region (Figure 4). Potential movements beyond the MPA are poorly 267 

represented in angling records.    268 
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 269 

Figure 3. Example utilisation distributions (UDs) from tagged skate. Each panel shows a 270 

UD for April 2016 for a given individual (row) and algorithm (column). Receivers (x) and 271 

zones open/closed to fisheries are marked. In the top-left panel, the UD is so concentrated that 272 

it is hidden by receivers.   273 

 274 
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 275 

 276 

Figure 4. An overall utilisation distribution for modelled skate, reconstructed by the 277 

ACDC algorithm. Colours represent the probability that a modelled individual was located in 278 

a given cell at a randomly chosen time (within the analysed time series). The region containing 279 

95 % of the probability mass is delineated by the black contour. Zones open/closed to fisheries, 280 
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tagging locations (✵), receivers (x) and locations where skate have been captured by anglers 281 

(●) are marked. 282 

 283 

In line with UDs, residency estimates (A3.2.3) were high in the MPA but differed among 284 

algorithms (Figure 5). Detection day (DD) proportions varied from 0.07–0.94 (median = 0.48). 285 

As in simulations (Figures 2 and S8), heuristic residency estimates were consistently low in 286 

open zones (median = 0.05) and high in closed areas (median = 0.88) and the MPA as a whole 287 

(median = 0.93). These estimates were relatively insensitive to differences in detection patterns 288 

among individuals (Figure S2). Particle algorithm estimates were somewhat higher in open 289 

zones and lower in closed zones and the entire MPA. In the AC algorithm, residency ranged 290 

between 0.01–0.45 (median = 0.10) in open zones, 0.32–0.95 (median = 0.78) in closed zones 291 

and 0.68–0.97 (median = 0.90) in the entire MPA. In the absence of acoustic constraints, DC 292 

algorithm estimates were more variable, though median residency estimates were similar (0.04, 293 

0.80 and 0.88). Median estimates from the ACDC algorithm were also broadly similar, ranging 294 

from 0.05 in open zones to 0.88 in closed zones and 0.92 in the entire MPA. Given limited data, 295 

seasonal trends in residency are unclear, although it is notable that ACDC residency estimates 296 

are broadly elevated in open areas over winter (when commercial fishing is permitted).   297 

 298 
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 299 

Figure 5. Residency of tagged skate in the MPA. Panels show individual residency time 300 

series for a given management area (row) and algorithm (column). The terms ‘Open’, ‘Closed’ 301 

and ‘Protected’ refer to zones within the MPA that are open or closed to fisheries and the entire 302 

MPA. Residency is the expected proportion of time spent in each area (in a given month). Thick 303 

points/lines are best-guess residency estimates; thinner points/lines are estimates from other 304 

algorithm parameterisations (sensitivity analysis). Estimates are only shown for months with 305 

sufficient data (hence gaps in some time series). Within panels, the feature of interest is the 306 

overall spread of estimates (rather than individual trajectories). Horizontal lines are null model 307 

estimates.  308 

 309 

2.3.3. Sensitivity analyses  310 

 311 

In real-world sensitivity analyses (A4), particle algorithm implementation success (A4.1) was 312 

affected by algorithm parameterisation (Figure S13). Convergence rates were highest in AC 313 
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algorithm implementations (98–100 %) and lowest in DC algorithm implementations (67–83 314 

%). Lower convergence was associated with both restricted and flexible parameterisations. 315 

 316 

In the UD analysis (A4.2.1), maps produced by different model parameterisations were broadly 317 

similar but differed in detail (Figure S19). As in simulations (Figures S3 and 5–6), heuristic 318 

algorithm UDs were largely unaffected by tuning parameters (Figure S19). In the AC 319 

algorithm, restrictive parameterisations generally concentrated maps and flexible 320 

parameterisations spread them out (Figure S19). DC algorithm sensitivity was more complex 321 

and included contractions, expansions and shifts in the distribution of hotspots. In the ACDC 322 

algorithm, restrictive and flexible parameterisations generally concentrated/expanded patterns 323 

of space use, weakening/strengthening the relative importance of habitat patches beyond the 324 

MPA, respectively (Figure S19). Where convergence was achieved, the restrictive depth 325 

observation model parameterisation in particular strengthened patterns of space use within the 326 

MPA and dampened the apparent importance of habitats further south.  327 

 328 

Residency estimates (A4.2.2) showed a similar degree of sensitivity to algorithm 329 

parameterisation (Figure 5). Restrictive parameterisations were generally associated with 330 

elevated residency estimates while flexible parameterisations were associated with reduced 331 

estimates, especially in the DC algorithm. However, median residency estimates remained 332 

remarkably stable. In the ACDC algorithm, median estimates, accounting for all algorithm 333 

parameterisations, were 0.05 (in open zones), 0.87 (in closed zones) and 0.93 (in the entire 334 

MPA).  335 

 336 

3. Discussion 337 

 338 
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This study sets a new state-of-the-art in animal tracking for conservation with underwater 339 

biotelemetry, building on decades of valuable work in this field. We reveal particle algorithms 340 

as a powerful methodology that can strengthen analyses of space use and residency, while 341 

addressing the limitations of long-established heuristic methods. Our analyses show that 342 

particle algorithms achieve substantial improvements in accuracy and precision, while heuristic 343 

algorithms can be difficult to tune, insensitive to the temporal pattern of detections and exhibit 344 

marked variation in performance. For the Critically Endangered flapper skate, particle 345 

algorithms suggested concentrated patterns of space use within an MPA, including time spent 346 

beyond receivers in zones that are open to fishing, as well as movements beyond MPA 347 

boundaries—significantly extending work on this and related species, with important 348 

implications for species conservation32,38,39. While heuristic methods have been valuable 349 

components of the animal-tracking toolbox17,21,22, particle algorithms provide a 350 

probabilistically sound statistical methodology that is sufficiently fast, flexible and accessible 351 

to meet the challenges of many modern animal-tracking datasets. We encourage their 352 

application to analyses of species’ movements and MPA efficacy across aquatic ecosystems9,40.   353 

 354 

We developed a simulation analysis to calibrate heuristic algorithms and evaluate algorithm 355 

performance and sensitivity. For heuristic algorithms, previous studies have typically relied on 356 

default values22 or subjective judgement20 to set tuning parameters, such that variation in 357 

algorithm performance and sensitivity is poorly documented19. In our study system, for the 358 

COA algorithm, we found that a setting of Δ𝑇 = 2 days was marginally better than other 359 

settings, while for the RSP algorithm there was no optimal choice for the distance-error 360 

(er.ad) parameter on average. This insensitivity appears reassuring, but it calls into question 361 

the relevance of tuning parameters and their ability to envelop the movement and detection 362 

processes that generate observations, upon which the utility of heuristic methods rests17,19. 363 
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 364 

Our simulations revealed a clear ranking of algorithms for estimating patterns of space use and 365 

residency. Performance of the two heuristic algorithms was similar but highly variable: 366 

simulated patterns were captured well in some instances and poorly in others. In residency 367 

analyses, the widely used ‘detection days’ metric underestimated residency in the MPA, in line 368 

with the limited movement capacity of simulated individuals (which could linger within the 369 

MPA but beyond receivers). Meanwhile, heuristic algorithms (which restrict positional 370 

estimates within receiver arrays, even if individuals move further afield) overestimated 371 

residency by a median 12 % (standard error ≈ 22 %). These results are specific to our study 372 

system but pertinent for many real-world arrays, where behaviour of prevailing analytical 373 

methods remains understudied17,19.  374 

 375 

Compared to heuristic methods, particle algorithms produced more accurate insights into space 376 

use and residency. There were clear benefits of data integration, with depth observations 377 

refining movements in the AC algorithm and acoustic observations helping to localise 378 

movements to relevant regions in the DC algorithm (which otherwise sometimes misplaced 379 

individual hotspots). Overall, residency was accurately estimated within a standard error of 7.6 380 

(AC), 3.7 (DC) and 2.8 (ACDC) %. This quantification of ‘array precision’ should become an 381 

effective means to evaluate and improve monitoring programmes in future (Lavender et al., in 382 

prep). In this study, simulations suggest that data integration enabled up to three-fold 383 

improvements in estimates of space use and residency (lower mean error, higher precision). 384 

We anticipate considerable opportunities to extend this kind of analysis in other systems to 385 

evaluate (a) existing arrays, (b) alternative array designs and (c) the number of receivers 386 

required to estimate metrics of interest with a specified degree of accuracy (Lavender et al., in 387 

prep).  388 
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 389 

The above simulation results were broadly robust to algorithm parameterisation. Heuristic 390 

algorithms were highly insensitive to algorithm parameterisation, but even particle algorithms 391 

were generally robust to mis-specification of individual parameters (such as the maximum 392 

movement speed), given the presence of other constraints (such as detection range)19. The DC 393 

algorithm showed the greatest sensitivity, as expected given the absence of acoustic constraints 394 

and the heterogenous distribution of depth habitats in our study system. In other study systems, 395 

we recommend that studies leveraging multiple datasets conduct similar analyses to examine 396 

algorithm sensitivity41. 397 

 398 

Our real-world analyses of flapper skate showcase significant enhancements in the use of 399 

acoustic telemetry for mobile species conservation. Within the MPA we study, we found that 400 

heuristic methods produced limited maps of space use that were driven by receiver positions 401 

(and insensitive to the temporal pattern of detections), while particle analyses indicated specific 402 

habitat patches in-between receivers that appear to be important, filling gaps in angling records 403 

and detection analyses32. The drivers of movement within these regions are unclear, but depth, 404 

temperature, light, sediment and/or prey preferences may play a role, as shown for other 405 

elasmobranchs42. A wide range of studies have linked detection patterns to habitat selection43,44 406 

and this is an important next step in our research. By probabilistically representing individual 407 

movements, particle algorithms have clear potential to strengthen habitat-selection analyses 408 

and support the identification of sites, within and beyond MPAs, that may benefit from 409 

conservation measures45,46.  410 

 411 

Within the MPA, our algorithms also suggested movements beyond receivers into fished zones. 412 

Given the sensitivity of elasmobranchs to trawling5,29, this result is potentially concerning and 413 
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suggests further analyses of skate–fisheries interactions in our study area are warranted. Further 414 

afield, we recognise that many MPAs contain fished zones where receiver deployments are 415 

limited by fishing activity7. The capacity to investigate movements into these zones is an 416 

important development for quantifying the trade-offs between species conservation and 417 

extractive activities. This should inform marine spatial planning in many regions47.   418 

 419 

By integrating tagging and tracking datasets with prior knowledge of species movement, we 420 

were also able to estimate individual residency at spatial scales relevant to management, 421 

notwithstanding limited receiver coverage. For analysed skate, our algorithms indicate a 422 

remarkably high degree of residency in the MPA. Earlier analysis of residency indices indicated 423 

that skate can spend weeks at a time around receivers32 but robust estimates of residency for 424 

flapper skate (and other mobile species) in regions with incomplete receiver coverage have 425 

remained elusive. In this study, we found the commonly used ‘detection days’ metric17 variable 426 

and poorly indicative of residency. Meanwhile, heuristic algorithms indicated consistently high 427 

MPA-scale residency across individuals, irrespective of detection gaps. Properly accounting 428 

for movements during detection gaps is a significant step forward in studies of the efficacy of 429 

MPAs for mobile species. For flapper skate, our best (ACDC) median residency estimate is 92 430 

%, suggesting that the MPA is sufficiently large to protect analysed skate for much of the year. 431 

This result is robust to algorithm parameterisation. This work strengthens the evidence that 432 

MPAs can be effective conservation measures for mobile species and supports the use of 433 

permanent, rather than seasonal, fisheries closures for flapper skate and other species that 434 

display similar movement patterns9,38,39. However, fisheries closures should be accompanied 435 

by wider fisheries management measures to protect individuals that exhibit weaker site 436 

affinity31.  437 

 438 
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We also documented evidence for movements into specific habitat patches beyond MPA 439 

boundaries that may warrant protection. For flapper skate, these include an area of moderately 440 

deep (>100 m) water off Jura and a shallow (50 m) sandy–muddy habitat off the Isle of Mull 441 

that is bounded by a deeper (100 m) trench (punctuated by subsurface rocks). It is tantalising 442 

to notice characteristics of an egg nursery in this location37. Currently, the only known flapper 443 

skate nursery is in the Red Rocks and Longay MPA (further north). While sample size is 444 

limited, we found no strong evidence for movements towards Red Rocks, so the search is on 445 

to determine where flapper skate using the MPA lay eggs37. The identification of essential fish 446 

habitats is crucial for mobile species conservation and a key objective of many telemetry 447 

studies, including our own work40. The unique capacity of our algorithms to facilitate this 448 

research, via the identification of specific habitats beyond receivers that are used by tagged 449 

animals, is a useful step forward. This should support the establishment of connected MPA 450 

networks for mobile species40.  451 

 452 

Improving the movement and observation models we use to model underwater biotelemetry 453 

data is an important task for future research. Our skate movement model would be informed 454 

by additional (e.g., accelerometer) data on individual behaviour and swimming speeds. Multi-455 

sensor tags hold considerable promise for this in future and should be leveraged by other 456 

studies11. Our acoustic observation model would also be improved with additional (sentinel) 457 

tag deployments and expanded detection range testing. Such data are widely collected  and 458 

should be incorporated in analyses48. In our study system, improvements to the depth 459 

observation model are a priority: in sensitivity analyses, different model parameterisations 460 

affected the localisation of hotspots within the MPA and the relative importance of habitat 461 

patches further afield. The key knowledge gap is the extent to which flapper skate exhibit 462 

benthic versus pelagic behaviour. In rugged bathymetric landscapes, fish behaviour affects the 463 
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locational information provided by depth observations and the ease with which particle filters 464 

converge. In this study, we attribute convergence failures to potential inadequacies in the depth 465 

observation model and the difficulty of finding valid routes through a bathymetric maze. In 466 

complex environments, particle algorithms may struggle and discretisation of the state-space 467 

for filtering49 or tempered Hamiltonian Monte Carlo50 may be required. For flapper skate and 468 

other aquatic species, continued tagging and monitoring, coupled with further analytical 469 

development in these directions, will support improved analyses in years to come.    470 

 471 

This work has significant implications for the spatial management of mobile species. By 472 

integrating animal movement modelling and electronic tagging and tracking data, we reveal 473 

how particle algorithms can represent movements beyond receivers, refine maps of space use 474 

and improve residency estimates. These developments enhance the value of biotelemetry data 475 

for mobile species conservation, informing MPA placement, size and management9. Our case-476 

study analyses of flapper skate provide a concrete example: confirming the value of fisheries 477 

restrictions in an existing MPA; indicating patterns of habitat use; quantifying movements into 478 

fished zones; and highlighting specific habitats beyond the MPA that may warrant protection. 479 

These insights into space use, residency in regions of interest and unprotected habitats beyond 480 

receivers represent great steps forwards for aquatic conservation44. That being said, model 481 

precision remains dependent on data quality and algorithm-informed study design may be 482 

beneficial moving forward. This work should support the conservation of flapper skate and 483 

other threatened species across the globe10,40. 484 

 485 

Particle algorithms have potential applications beyond spatial management. Acoustic telemetry 486 

and biologging are expanding rapidly15,16. With the growth of international telemetry networks, 487 

the spatial scale over which animals can be tracked is also widening. Analyses of telemetry 488 
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data require statistical models that accurately reconstruct movements and represent uncertainty. 489 

Our integrative modelling framework is thus well-placed to strengthen research across the 490 

biotelemetry sphere, from ecological analyses of individual movements44 through to the 491 

conservation objectives addressed in this paper40. We foresee opportunities to refine habitat 492 

selection analyses46, investigate co-occurrence patterns51 and support animal-borne 493 

oceanography52, fisheries management53, climate change mitigation54, habitat restoration55 and 494 

impact assessments56. The methods are relevant for research projects across disparate 495 

systems15,16 and have the potential to support progress towards strategic objectives, such as 496 

Sustainable Development Goal 1440. We hope that this study encourages advances towards this 497 

goal in the second half of the United Nations Decade of Ocean Science for Sustainable 498 

Development.  499 

 500 

4. Methods 501 

 502 

4.1. Study system  503 

 504 

We selected a 14,000 km2 case-study system in Scotland (Figure 1). The bathymetry 505 

encompasses shallow-water platforms, deep basins and channels up to 350 m in depth. Within 506 

the site, the Loch Sunart to the Sound of Jura MPA spans 741 km2 and a depth range of 0–290 507 

m. Current management prohibits commercial fishing except in eight, seasonally (October–508 

March) fished zones. For further description, including bathymetric data sources, see 509 

Supporting Information §1 and Table S1.  510 

 511 

From 2016–17, a passive acoustic telemetry system comprising 58 Vemco receivers was 512 

established in part of the MPA32. Skate were captured in the same area and tagged with acoustic 513 
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transmitters and archival (depth) tags35. For full details, including array and tag properties, see 514 

Supporting Information §2.  515 

 516 

4.2. Workflow  517 

 518 

We conducted simulation-based and real-world analyses of animal movements (see Table S2 519 

for an overview and §4.3–4 for details). In each analysis, we analysed movements using two 520 

heuristic algorithms (COAs and RSPs) and our particle algorithms. The workflow comprised 521 

three stages: (a) coordinate estimation, (b) mapping and (c) residency estimation, which are 522 

explained in general terms in §4.2.1–3 before the details of our analyses. Algorithms were 523 

implemented in R, v.4.3.157, using the patter28 and RSP22 packages. All code is available 524 

online58.  525 

 526 

4.2.1. Coordinate estimation  527 

 528 

COAs. The first algorithm we used to estimate coordinates for mapping was the COA 529 

algorithm. This estimates coordinates as weighted averages of receiver locations where 530 

detections were recorded over sequential time intervals (duration: Δ𝑇). We selected three Δ𝑇 531 

values (an ‘optimal’ value, a restrictive value and a more flexible value) to examine algorithm 532 

performance and sensitivity (see §4.3).  533 

 534 

RSPs. The RSP algorithm interpolates coordinates along the shortest paths between the 535 

receivers. We used the default settings for tuning parameters except er.ad, which tunes 536 

coordinate weights for mapping. As above, we selected three values by simulation (see §4.3). 537 

For implementation details, see Supporting Information §3.  538 
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 539 

Particle algorithms. We also implemented the acoustic-container (AC), depth-contour (DC) 540 

and acoustic-container depth-contour (ACDC) particle filtering–smoothing algorithms19. To 541 

implement these algorithms, we formulated a Bayesian state-space model (SSM) for the 542 

location (strictly ‘state’) 𝒔𝑡 of an individual through time (𝑡 ∈ {1, 2, … , 𝑇}), given the (acoustic 543 

and archival) observations (𝒚1:𝑇), that is, 𝑓(𝒔1:𝑇| 𝒚1:𝑇). Our SSM represents an underlying 544 

behavioural switching movement process that includes a ‘low activity’ state (encompassing 545 

resting) and a more active state. Movements are connected to acoustic observations (detections, 546 

non-detections) by a Bernoulli observation model in which detection probability declines 547 

logistically with distance from receivers. The depth observation process is described by a 548 

truncated Gaussian distribution centred on the seabed (capturing skate’s benthic lifestyle) with 549 

a variance accounting for observational and bathymetric uncertainty. For the model 550 

formulation, see Supporting Information §4.1 (mathematics), Table S3 (notation summary) and 551 

Figure S1 (visualisation). We considered a ‘best-guess’ parameterisation as well as a restrictive 552 

and flexible parameterisation for the movement and observation sub-models. SSM 553 

parameterisations were based on prior research, domain knowledge and a literature review. See 554 

Supporting Information §4.2–3 (for details) and Table S4 (for a summary of parameter values).  555 

 556 

Particle filtering and smoothing algorithms perform model inference for the SSM, targeting the 557 

marginal distribution 𝑓(𝒔𝑡 | 𝒚1:𝑇). The distribution of individual locations is approximated by 558 

a Monte Carlo simulation of 𝑁 weighted particles, which represent candidate positions of the 559 

individual. In the particle filter, a movement model simulates particle movement from one time 560 

step to the next; observation models weight particles in line with their compatibility with the 561 

data; and a resampling step duplicates or eliminates particles accordingly. The AC, DC and 562 

ACDC algorithms differ only in the data incorporated during this process (acoustic, depth or 563 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 17, 2025. ; https://doi.org/10.1101/2025.02.13.638042doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.13.638042
http://creativecommons.org/licenses/by/4.0/


Particle algorithms for conservation 

 28 

both datasets). The number of particles is a trade-off between speed and convergence: sufficient 564 

particles are required to ensure that at least some particles are compatible with the data at every 565 

time step. After subsequent particle smoothing, the result is a set of particles that approximate 566 

𝑓(𝒔𝑡 | 𝒚1:𝑇). For implementation details, see Supporting Information §4.4. 567 

 568 

4.2.2. Mapping 569 

 570 

For COAs and particle algorithms, we generated maps of space use, i.e., utilisation distributions 571 

(UDs), by kernel smoothing estimated coordinates28. For the RSP algorithm, a dynamic 572 

Brownian-bridge movement model is used to smooth coordinates22. For implementation 573 

details, see Supporting Information §5.   574 

 575 

4.2.3. Residency  576 

 577 

Alongside UDs, we estimated the proportion of time spent in selected areas (i.e., residency). 578 

We considered residency in our study system in three areas: zones (a) open and (b) closed to 579 

fisheries and (c) the entire MPA. Residency was estimated as the proportion of (i) UD volume 580 

(for heuristic algorithms) or (ii) resampled particles (for particle algorithms) in each area. We 581 

also considered (iii) the proportion of days with detections in each area (a standard metric) for 582 

comparison.   583 

 584 

4.3. Simulation-based analysis 585 

 586 

Our first analysis was a simulation-based analysis (see Table S2 for the overview). In this 587 

analysis, we simulated individual movements and corresponding observations in our study 588 
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system and reconstructed patterns of space use using COAs, RSPs and particle algorithms. We 589 

used simulation results to calibrate heuristic algorithms for real-world analyses, evaluate 590 

algorithm performance and sensitivity, and validate the use of particle algorithms for later 591 

analyses (see §4.4). Full details are available in Supporting Information §6.  592 

 593 

In outline, we simulated movements from ‘tagging locations’ within the study area for 100 594 

hypothetical flapper skate over a one-month period, according to our best-guess skate 595 

movement model (see Supporting Information §6.1). For each movement path, we simulated 596 

acoustic and depth observations, following best-guess models for the aforementioned acoustic 597 

and depth observation processes. For each path, we generated a ‘true’ UD via kernel smoothing. 598 

Residency was calculated as the proportion of path steps in each area. Using the simulated 599 

datasets, we assessed the performance and sensitivity of algorithms applied to simulated 600 

observations in terms of how well they recovered path UDs and residency (see Supporting 601 

Information §6.2–3). In the following description, we label performance and sensitivity 602 

analyses as ‘A1’ and ‘A2’, respectively. Analytical steps are labelled in the same way (as A1.1, 603 

A1.2, etc.), following Table S2.   604 

 605 

In performance analyses, we evaluated the skill with which algorithms reconstructed simulated 606 

patterns of space use and residency (A1). This analysis included a null model (uniform UD, 607 

excluding land) alongside heuristic and particle algorithms parameterised with optimal or best-608 

guess parameters (A1.1). For heuristic algorithms, a simulation approach was used to select 609 

optimal parameter values: for each path, we computed the mean absolute error (ME) between 610 

the UD for each simulated path and reconstructed UDs for a range of candidate parameter 611 

values and identified the parameter value with the lowest ME on average (A1.1.1). Particle 612 

algorithms were parameterised according to the data-generating processes (A1.1.2). Heuristic 613 
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algorithms were implemented for each acoustic time series and particle algorithms (AC, DC 614 

and ACDC) were implemented for each (a) acoustic, (b) depth and (c) combined dataset, 615 

respectively (A1.2). We then evaluated algorithm performance (A1.3) by visually comparing 616 

simulated and reconstructed UDs for three selected paths (A1.3.1), the distribution of ME 617 

between all simulated and reconstructed UDs (A1.3.2) and the distribution of residency error 618 

(estimated residency minus true residency) between simulated and reconstructed patterns, by 619 

algorithm (A1.3.3). Residency error was quantified for the null model and the detection days 620 

metric (as benchmarks), as well as the heuristic and particle algorithms.  621 

 622 

In sensitivity analyses, we used a subset of paths (1–3) to explore algorithm sensitivity (A2). 623 

In this analysis, we re-implemented the algorithms with restrictive and flexible 624 

parameterisations (A2.1). For the particle algorithms (which are stochastic), we ran each 625 

algorithm implementation three times to examine reproducibility. We then analysed algorithm 626 

sensitivity and reproducibility (A2.2) by visualising patterns of space use (A2.2.1), ME 627 

(A2.2.3) and residency error (A2.2.3) for each algorithm parameterisation/implementation.  628 

 629 

For our study area, the simulation analyses (a) confirmed that particle algorithms outperform 630 

heuristics, (b) revealed algorithm sensitivity and (c) demonstrated that stochastic particle runs 631 

produce consistent results. By visually comparing maps between AC, DC and ACDC 632 

algorithms, we also gauged the relative importance of acoustic and/or depth datasets in refining 633 

maps of space use.  634 

 635 

4.4. Real-world analyses 636 

 637 
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In real-world analyses (A3–4), we analysed movement patterns of tagged skate (Figure S2, 638 

Table S5). Data were sourced from a study of 42 individuals tagged with acoustic and archival 639 

tags (33 of which were detected)32. We selected 13 individuals (30 %) with sufficient data for 640 

analysis. (For data processing, see Supporting Information §7.1.) For each individual, we 641 

analysed movements over each month using (a) the acoustic data, (b) the depth data and (c) the 642 

combined data. We analysed 48 individual/month time series in total (1–14 months per 643 

individual).  644 

 645 

Following the simulation workflow (§4.3), for each individual, for each month, we analysed 646 

data using heuristic algorithms (acoustic datasets only) and the particle algorithms (acoustic, 647 

depth and combined datasets). In our main analyses (A3), each algorithm was implemented 648 

once using optimal (heuristic) or best-guess (particle algorithm) parameters (A3.1). We 649 

estimated UDs for each dataset (A3.2.1). We assessed similarities and differences among 650 

individuals and algorithms visually, given limited data. UDs were aggregated (A3.2.2) to map 651 

the overall pattern of space use and assess overlap with long-term (1975–2024) skate presence 652 

angling records59. Residency was estimated as in simulations (A3.2.3). In sensitivity analyses 653 

(A4), we re-implemented algorithms with restricted and flexible parameterisations (A4.1) and 654 

analysed changes in UDs (A4.2.1) and residency (A4.2.2). For the overview, see Table S2. For 655 

full details, see Supporting Information §7.2.  656 

 657 

Data availability statement 658 

 659 

Data are available from NatureScot and Marine Scotland Science. Code is archived on Zenodo 660 

at https://doi.org/10.5281/zenodo.1480516158.  661 
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