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ABSTRACT

Where and how species are sampled can shape biodiversity knowledge, spatial patterns, and
data-driven conservation. In many Global South biodiversity hotspots, sampling remains
uneven, and available data often lack the synthesis needed to assess region-wide gaps for
effective conservation planning and priority-setting. This shortfall is common within
conserved areas and key biodiversity areas (hereafter ‘priority conservation areas’ or PCAs).
We demonstrate this case in the Philippines, one of the most biodiverse countries in the
world, where longstanding biodiversity research and growing policy momentum support
efforts to expand coverage of conserved areas. Drawing on over a century of species
occurrence records made digitally accessible, we compiled and manually curated these data
to assemble and analyze information on Philippine amphibians and squamate reptiles from
multiple sources, assessing the spatial distribution of observed diversity in relation to PCAs.
Results reveal strong spatial biases, with preserved specimens comprising the majority of
records and largely shaping observed diversity patterns. Citizen-science data complement
already well-sampled regions, while records from peer-reviewed literature contribute
valuable documentation in poorly sampled areas. PCAs are proportionally well-sampled,
although gaps and biases remain. Sampling effort and observed diversity were higher in
larger PCAs, but this positive area effect diminishes with increasing topographic relief,
highlighting large mountain ranges as persistent blind spots in biodiversity documentation.
Notably, some areas of higher diversity occur outside established PCAs. We discuss
implications of these biases and propose enabling mechanisms to improve primary
biodiversity data collection. This study affirms the importance of integrating digitally
accessible biodiversity data from multiple sources in revealing sampling gaps and biases,
guiding future studies towards poorly sampled areas and informing conservation priorities.

Keywords: Philippines, biodiversity data, knowledge shortfalls, protected areas, mountains,
macroecology
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INTRODUCTION

Biodiversity data remain unevenly distributed across taxonomic groups and geographic
regions, with pronounced biases against global biodiversity hotspots (Hortal et al., 2015;
Hughes et al., 2021; Moura & Jetz, 2021; Ondo et al., 2024; Ball et al., 2025). Several factors
contribute to these biases, including limited research capacity (Barber et al., 2014; Zhang et
al., 2023), preferential focus on certain taxonomic groups (Titley et al., 2017; Moura & Jetz,
2021; Ondo et al., 2024) and charismatic taxa (Troudet et al., 2017; Guénard et al., 2025),
ease of site accessibility (Oliveira et al., 2016; Mandeville et al., 2022; Penhacek et al.,
2025), and prevailing tendency to conduct research in areas of special interest (Sastre &
Lobo, 2009; Mentges et al., 2021). As a result, many regions and their wildlife remain poorly
sampled—and where data exist, they are often not digitally accessible or fall into
“biodiversity blind spots”, obscuring biodiversity patterns (Ball et al., 2025). These sampling
biases can hinder robust macroecological analyses and obstruct evidence-based conservation
planning (Jetz et al., 2012; Engemann et al., 2015; Santini et al., 2021; Diniz-Filho et al.,
2023; Hughes et al., 2024), particularly at national scales where most conservation policies
and management actions are implemented (Grattarola et al., 2020; Perino et al., 2021,
Soberdn, 2022). Therefore, identifying where biodiversity data exist, for which taxa, and to
what extent is essential for proactively addressing these biases and strengthening the
knowledge base needed for effective conservation.

Challenges in biodiversity data availability are persistent even within global biodiversity
hotspots, like the Philippines, where gaps and biases in data coverage skew biodiversity
knowledge toward certain regions and taxonomic groups (Berba & Matias, 2022; Meneses et
al., 2024; Pitogo, 2025). As a megadiverse and biogeographically unique country threatened
by habitat loss (Brown et al., 2013; Huais et al., 2025), the Philippines urgently requires
robust and data-informed conservation strategies. However, limited availability and
discoverability of biodiversity data, and a lack of information on how these data are spatially
distributed, constrains efforts to evaluate sampling completeness and to guide national
biodiversity strategies and research priorities (Soberon & Peterson, 2009; Soberdn, 2022).
The need for synthesized biodiversity data to inform conservation planning is especially
urgent, as biodiversity loss and the global momentum under the Kunming-Montreal Global
Biodiversity Framework (CBD, 2022; Orr et al., 2022) have prompted policy responses to
expand protected areas (PAs) and recognition of other effective area-based conservation
measures (OECMs), now covering approximately 15% of the Philippines’ land area (ASEAN
Centre for Biodiversity, 2023). This expansion not only demands effective management
grounded in ecologically representative, well-connected, and equitably governed networks of
PAs and OECMs (CBD, 2022) but also must deliver measurable, positive outcomes for
biodiversity (Maxwell et al., 2020). A critical first step towards achieving such outcomes is
to strengthen biodiversity data by improving sampling coverage and accessibility (Soberon &
Peterson 2009; Mallari et al., 2013; Jetz et al., 2019; Grattarola et al., 2020; Hochkirch et al.,
2021; Soberon, 2022; Urbano et al., 2023).

A key step toward ensuring that biodiversity knowledge of a particular area is sufficient to
support conservation strategies is to assess where biodiversity data are spatially distributed
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and how these patterns align with conserved areas (PAs and OECMs) and key biodiversity
areas (collectively referred to herein as ‘priority conservation areas’ or PCAs). Such an
approach remains lacking for the Philippines despite long-standing efforts to document
wildlife in this megadiverse, global biodiversity hotspot (Brown et al., 2001; Heaney, 2001;
Pelser et al., 2011; Heaney et al., 2016; Tanalgo & Hughes, 2018; Allen, 2020; Gamalo et al.,
2021; Berba & Matias, 2022; Meneses et al., 2024; delos Angeles et al., 2025; Fernandez et
al., 2025; Balisco & Liao 2025; Pitogo, 2025). While data deficiencies affect many
taxonomic groups, some are better represented due to sustained research and collection
efforts. Herpetofauna offer a compelling case for such analysis in the Philippines: the group
has benefited from over a century of active and sustained research effort (Brown et al., 2001;
Meneses et al., 2024). In fact, recent years have seen an acceleration of engagement in
amphibian and reptile studies, with increasing numbers of researchers, broader types of
investigations, and expanding publication output (Meneses et al., 2024), all suggesting that
herpetofauna are a particularly timely and relevant group for such work and that data
availability will likely continue to grow. Endemic herpetofauna are also relatively well-
sampled genetically, with voucher specimens housed in museum collections (Pitogo, 2025);
and curated occurrence records are available in substantial volume across peer-reviewed
literature (Diesmos et al., 2015; Leviton et al., 2018). Moreover, reptiles have been shown to
serve as effective surrogates for broader vertebrate biodiversity patterns in KBAs across the
country (Fidelino et al., 2025). Herpetofauna thus provide a valuable lens to evaluate spatial
patterns in biodiversity data for improving country-wide biodiversity documentation and
ensuring that conservation efforts are grounded in the best available evidence.

Leveraging species data on Philippine herpetofauna spanning ~125 years (1900s—2025) made
digitally accessible, we compiled, manually curated, and analyzed occurrence records to
conduct country-wide spatial assessments of observed diversity of amphibians and squamate
reptiles using multiple data sources. Specifically, we ask: (1) How is observed herpetofaunal
diversity spatially distributed across the Philippines, and how well do these distribution
patterns coincide with PCAs? (2) Which PCAs, and which types, are more thoroughly
sampled? and (3) How do observed biodiversity patterns differ across datasets derived from
museum collections, citizen-science platforms, and peer-reviewed literature? Our findings
offer novel, long-overdue insights into spatial distribution of biodiversity data in the
Philippines, particularly in relation to PCAs. Drawing from our results, we propose and
discuss enabling mechanisms to improve primary biodiversity data collection, strengthening
the knowledge base necessary in assessing management effectiveness for area-based
conservation measures needed in the country (Mallari et al., 2016; Struebig et al., 2025). By
identifying key data shortfalls and sampling biases, this study contributes to the growing
body of empirical evidence underscoring the critical role of integrating digitally accessible
biodiversity data from multiple sources. Such data are essential not only for revealing spatial
and taxonomic gaps to guide future studies towards poorly sampled areas but also for
enabling evidence-informed conservation in one of the world’s most important biodiversity
hotspots.
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MATERIALS & METHODS
Data assembly and curation

All georeferenced occurrence records for amphibians and squamate reptiles from the
Philippines were downloaded from the Global Biodiversity Information Facility (GBIF) on
31 January 2025 (amphibians) and 07 February 2025 (squamate reptiles). To reduce data
duplication, we initially excluded records categorized as material citations and retained only
human-observation records from iNaturalist and HerpWatch Pilipinas. These were then
merged with expert-curated species occurrence data from the literature: amphibians from
Diesmos et al., (2015) and snakes from Leviton et al., (2018). To avoid overlap between
GBIF records and these curated datasets, only GBIF records dated post-publication—2015
onwards for amphibians and 2018 onwards for snakes—were retained. For lizards, all GBIF
records were included. Additionally, duplicate field numbers from Sam Noble Oklahoma
Museum of Natural History and Father Saturnino Urios University-Biodiversity Informatics
and Research Center that corresponded to catalogued specimens from the University of
Kansas Natural History Museum (KU) were excluded, with only KU records retained.
Finally, we incorporated verifiable occurrence records of non-museum-catalogued specimens
from peer-reviewed literature compiled by Meneses et al., (2024), along with a few
additional entries. For consistency in categorization, all museum records were treated as
“preserved specimen” records; iNaturalist and HerpWatch Pilipinas as “citizen science”
records; and data from peer-reviewed literature as “material citation” records.

After initial clean-up, we recovered 471 nominal and candidate species of terrestrial
amphibians and squamate reptiles that have digitally accessible occurrence records.
Occurrence records for each species were then manually curated using currently accepted
taxonomic treatments and synonyms. Each species’ occurrence records were mapped in
QGIS 3.4 Madeira (QGIS Development Team, 2018) to assess spatial accuracy of each point.
Records falling outside the known geographic range of a species and lacking verifiable
documentation were excluded. In cases where a formerly widespread species had been
taxonomically split, historical records were reassigned to currently accepted species name
based on updated diagnostic and distributional information in taxonomic studies. For species
with unclear taxonomic or geographic boundaries, only records supported by verifiable data
(e.g., curated vouchered specimens, occurrences within known distribution supported by
peer-reviewed literature) were retained. Since expert-curated distributional literature for
Philippine lizards is lacking, we adopted an additional measure by comparing our
preliminary range estimates with the Global Assessment of Reptile Distributions (Roll et al.,
2017; Caetano et al., 2022). This conservative step was taken to minimize potential
overestimation of species diversity metrics.

Records not identified to the species level were excluded unless a species name or a
placeholder name (e.g., sp. + island name, sp. + number) could be confidently assigned
without the risk of double-counting (e.g., when only a single species from a genus is known
to occur in the area). Given that the frog genus Platymantis remains taxonomically
unresolved (Brown et al., 2015), a conservative approach that accounts for this uncertainty
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was adopted by including records of candidate species occurring in areas with no known
range overlap with closely related congeners. This strategy minimizes the risk of double-
counting should these populations ultimately represent a single species, while also retaining
valuable data that would otherwise be discarded. This decision was informed by
phylogenetic evidence, following Brown et al., (2015).

All records lacking locality information were discarded. Additionally, records with
coordinates at 16.45°N, 120.55°E and 13°N, 122°E from GBIF were excluded, as the
associated locality descriptions did not match the expected geographic locations. These
coordinates appear to be generalized placeholders rather than accurate site data.

Statistical analyses
Mapping herpetological diversity across the Philippines

Occurrence records for amphibians and squamate reptiles were used to generate a presence—
absence matrix (PAM) at a 10-km grid resolution across the Philippines, using
prepare_base pam function from the R package biosurvey (Nufiez-Penichet et al., 2022).
Separate PAMs were created for (1) all data types, (2) preserved-specimen records, (3)
citizen-science records, and (4) material-citation records. For each PAM, alpha diversity
(species richness) was calculated per 10-km grid cell, and the results were visualized as
spatial maps using QGIS 3.4 Madeira. The resulting maps of herpetological diversity were
overlaid with shapefiles of PCAs to assess spatial overlap between species richness and
coverage area. Shapefiles for PCAs were obtained from the World Database on Protected
Areas (www.protectedplanet.net).

To assess whether species richness classes were evenly represented across grid cells, a chi-
square goodness-of-fit test was conducted using the chisq.test function in R version 4.3.1 (R
Core Team, 2023). Richness values were grouped into nine discrete classes, and the observed
frequency of cells in each class was compared to a uniform distribution, under the
assumption that all classes were equally likely. Expected counts were computed by dividing
the total number of grid cells by the number of richness classes. All expected frequencies
exceeded 5, meeting assumptions of the chi-square test.

Predictors of herpetological diversity across priority conservation areas

To quantify species occurrence records and diversity within PCAs, we spatially intersected
occurrence points with PCA boundaries using “Join Attributes by Location” tool in QGIS 3.4
Madeira (input: occurrence points; join layer: PCA polygons; predicate: intersects). The
resulting dataset was exported as a CSV file and processed in R statistical software, where
records without PCA matches were excluded. Data were grouped by PCA to calculate the
number of occurrence records and unique species per PCA. PCAs without intersecting
occurrences were retained with zero counts. Polygon area (in km?) was calculated using
expanse function in the terra package (Hijmans, 2024). Only terrestrial PCAs were included
in the analysis, comprising 207 CAs and 109 KBAs.
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Topographic relief for each PCA was extracted using a Digital Elevation Model (DEM) of
the Philippines downloaded from the CGIAR Consortium for Spatial Information
(https://srtm.csi.cgiar.org/). This DEM, provided in Arc/Info Grid format, was clipped to the
spatial extents of each PCA. Clipping was performed using QGIS’ ‘Clip Raster by Mask
Layer’ tool, with DEM as the input raster and PCA polygon shapefiles as the mask layer. The
resulting clipped DEM layers contained elevation data exclusively within each PCA
boundary. Subsequently, minimum and maximum elevation values were calculated for each
PCA polygon using the ‘Zonal Statistics’ tool in QGIS. The difference between these values
was used to quantify topographic relief (in meters) of each PCA.

To investigate potential drivers of species diversity across PCAs, we fitted generalized linear
models with a negative binomial error distribution to account for overdispersion (dispersion
parameter < 1, compared to >5 in the Poisson models) and improve model fit (AIC > 1000
for Poisson, but < 1000 for negative binomial models). The response variable was the total
number of species recorded per PCA. Fixed predictors included total area (km?), occurrence
density (number of occurrence records per km?), and topographic relief (m). Total area and
topographic relief served as proxies for landscape features, based on hypotheses that larger
areas and those spanning broader elevational gradients —by virtue of having heterogenous
habitat—support higher biodiversity (Ricklefs & Lovette, 1999: Gotelli, 2008). Occurrence
density was used as a proxy for sampling effort, since species diversity per grid cell
increased with occurrence points. Predictor variables were transformed based on their
distribution to improve model fit: area and occurrence density were logio-transformed due to
strong right skew, and topographic relief was square-root-transformed due to moderate right
skew. All predictors were then mean-centered and scaled to facilitate model convergence and
interpretation of coefficients.

Because PCAs differ in their underlying species pools due to historical biogeographic
structuring or other evolutionary processes, we initially included the Pleistocene Aggregate
Island Complex (PAIC; see Brown et al., 2013) as a random effect for potential non-
independence in species diversity. However, PAIC explained less than 1% of the variance
and did not improve model performance, so it was excluded from the final model. We then
fitted a fully factorial model with negative binomial error and performed stepwise model
selection based on Akaike Information Criterion (AIC), using the stepAIC function in the R
package MASS (Venables & Ripley, 2002; Table S1-S2). Residual diagnostics using
DHARMa indicated quantile deviations for the occurrence density predictor, likely
attributable to an excess of zero values reflecting undersampling, rather than model
misspecification. Tests of overdispersion and residual uniformity did not indicate violations
of model assumptions.

In addition to modeling species diversity, total occurrence records per PCA were modeled as
a function of total area, topographic relief, and PAIC as fixed predictors, using a negative
binomial error distribution. A two-way interaction between total area and topographic relief
improved model fit and was retained in the final model, as supported by model selection
based on AIC (Table S3—S4). DHARMa diagnostics indicated no major violations of model
assumptions, although quantile deviations were observed for the total area predictor. These
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270  deviations likely reflect an exponential increase in predicted values and a widening spread of
271  residuals at higher area values, where fewer PCAs occur and variability is greater (Figure
272 S3). This sampling effort model aimed to determine whether species-poor areas are

273 genuinely less diverse or simply poorly sampled.

274

275  Generalized linear models were fitted using the glmmTMB package (Brooks et al., 2017).
276  Overdispersion was initially assessed using a custom R function that calculates the ratio of
277  the sum of squared Pearson residuals to residual degrees of freedom, with values >1.5

278  considered indicative of overdispersion requiring correction (Zuur et al., 2009). Model

279  diagnostics for final models were conducted using the DHARMa package (Hartig, 2024).
280  Simulated residuals were generated with the simulateResiduals function (plot = TRUE), and
281  goodness-of-fit tests on scaled residuals were done using testZerolnflation, testUniformity,
282  and testDispersion functions. Residuals were also plotted against each fixed predictor using
283  plotResiduals to check for non-random patterns. Variance inflation factors (VIFs) for all

284  predictors, calculated using the R package performance (Liidecke et al., 2021), were

285  generally within acceptable limits (all VIFs < 5). However, moderate collinearity was

286  observed in KBA species diversity model for the interaction between occurrence density and
287 area (VIF = 6.42), as well as for topographic relief (VIF = 5.34). All diagnostic outputs and
288  residual plots are provided in Figures S1-S4.

289

290  As acomplement to model-based inference, bivariate relationships between the response
291  variable and continuous predictors were visually examined. These relationships were plotted
292  using locally estimated scatterplot smoothing (LOESS) with 95% confidence intervals,

293  implemented via the ggplot2 package. Predictor variables were transformed to match model
294  specifications, and point colors were used to reflect the values of interacting variables with
295  significant effects, unless otherwise stated, aiding interpretation of interaction patterns. For
296  descriptive purposes, Pearson correlation coefficients were calculated for each plot, with
297  significance assessed at o = 0.05 using the cor.test function. All statistical analyses were

298  conducted in R version 4.3.1 (R Core Team, 2023) and documented in the attached

299  Supplementary Material.

300

301

302 RESULTS

303

304  Spatial distribution of herpetofaunal diversity in the Philippines

305

306  Spatial distribution of observed herpetofaunal diversity in the Philippines is non-uniform and
307 fragmented, with unequal national-scale coverage that varies considerably across islands
308  (Figure 1A). The distribution of species richness classes significantly deviated from a

309  uniform expectation (¥*(8) = 15,843, p < 0.001), indicating uneven observed species richness
310 across the archipelago. Some richness classes were overrepresented, while others were

311  underrepresented relative to expectations if all classes were equally likely. Nationally, only
312 ~2% (n = 87) of the 10-km? grids have more than 41 observed species—roughly 50% of

313  maximum richness recorded in any grid—while 31% (n = 1,370) have between 1 and 40

314  species, and 66.7% (n = 2,914) have zero recorded species.


https://doi.org/10.1101/2025.09.13.676052
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.13.676052; this version posted September 17, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

(R) All Data Types ; (B) Preserved Specimen
315 No. of species "'v No. of species ’

[]o 0
316 B B
317 5140 | E
18 I i
319 . 71-80 W7 -8
320
321 -
323 -— 2 g
324
325
326
327
328
329
330
331
332
333 ‘
334 (€) Citizen Science i (D) Material Citation
335 No. of species ’ No. of species ’
336 I o A
337 | HiA | A
338 Bl o 51 60
339 B E
340
341 ]
342 R ASAS
43 B SES
344 ot s W
345 ¥ ONEe
346 & .
347 .
348
349 y
350 ’
351
352
353
354

355  Figure 1. Spatial distribution of observed amphibian and squamate reptile diversity for (A)
356 all data types; (B) preserved-specimen records; (C) citizen-science records; and (D) material-
357  citation records. Species richness is calculated per 10-km? grid cell across the Philippines.
358 Inset bar graph shows frequency distribution of grid cells across species richness classes for
359 each dataset. Dashed red line indicates expected frequency for each class under a uniform
360 distribution, as used in chi-square goodness-of-fit tests.
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Different data sources provide complementary insights into herpetofaunal diversity. The
majority of occurrence records came from preserved specimens (n = 70,112), followed by
citizen science contributions (n = 3,735) and material citations (n = 2,344), while 37 points
were unclassified. Both preserved-specimen and citizen-science data represent individual
occurrences, while material citations typically reflect species-level records, as published
species inventory studies usually report presence by species rather than by individuals. All
three data types significantly deviated from a uniform expectation (}*(8) = 20,186-30,610, p
< 0.001). Because preserved specimens account for 92% of all records, spatial richness
patterns largely mirror those derived from the combined dataset (Figure 1B). Citizen science
data generally contribute 1-10 species per grid, with a few grids reaching up to 30 species,
and tend to complement regions already covered by specimen-based surveys (Figure 1C).
Material citation data are concentrated in fewer areas, consistent with the targeted, site-
specific nature of biotic inventories (Figure 1D).

Priority conservation areas were proportionally well-sampled, although distribution of
herpetofaunal diversity is uneven and concentrated in few areas (Figure 2). Of the 76,228
curated occurrence records, 21,210 (27.8%) fell within CAs and 23,058 (30.2%) within
KBAs—yproportions that are disproportionately high relative to the Philippine land area
occupied by these designations (12—15% for CAs and 6.72% for KBAs). Overlaying species
richness with PCA boundaries shows that whereas some high-richness grid cells lie within
PCAs, many large sites include cells with sparse or no records. Notably, 52.7% of 207 CAs
and 20.2% of 109 KBAs contain grid cells with zero species records, and an additional
22.4% of CAs and 29.4% of KBAs contain only up to 10 recorded species. At the same time,
several well-sampled areas with high observed diversity (>40 recorded species) occur outside
established CAs but within forested areas, many of which partially overlap with KBAs
(Figure S5).

Well-surveyed sites, those with >40 recorded species, make up 8.8% of CAs and 18.3% of
KBAs (Figure 2). Particularly species-rich locations (>60 species) include Samar Island
Natural Park, Pasonanca Natural Park, Mt. Malindang Natural Park, Mt. Makiling Forest
Reserve, and PP1636 (unnamed wildlife sanctuary in southcentral Luzon). These sites have
been extensively surveyed, with data available in public repositories like GBIF, though many
records remain absent from, or not reported in, peer-reviewed literature (but see Nuneza et
al., 2010; Gonzalez et al., 2020). Other well-documented areas combine strong specimen
representation in collections with published data: Cuernos de Negros (Brown & Alcala 1961,
1970), Aurora Memorial National Park (Brown et al., 2000; Siler et al., 2011), Mt. Busa—
Kimba (Brown, 2015; Pitogo et al., 2021), Mt. Guiting-Guiting (Siler et al., 2012; Meneses
et al., 2022), Mt. Hilong-hilong (Plaza et al., 2015; Sanguila et al., 2016), Pantabangan-
Caranglan Watershed Reservation (Gojo-Cruz et al., 2018), and Victoria-Anepahan Ranges
(Supsup et al., 2020). The 40-species cut-off, however, is used here solely as a reference
point for discussion and should not be interpreted as a true threshold of diversity, since
observed values remain influenced by sampling limitations and potential biases.
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428  Figure 2. Relative locations of well-sampled (>40 species) conserved areas and key

429  biodiversity areas across the Philippines. Total area, occurrence point density, and number of
430  species are included for each area. Base map shows spatial distribution of observed

431 amphibian and squamate reptile diversity for all data types. Inset histogram shows frequency
432  distribution of priority conservation areas by species richness and number of occurrence

433 records.

434

435

436  Predictors of species diversity across conservation areas

437

438  Species diversity in PCAs was best explained by models that included total area,

439  occurrence density, and their interactions with topographic relief, although the

440  structure of these relationships varied. For CAs, the top-ranked model included total

441  area, occurrence density, topographic relief, and an interaction between area and

442  topographic relief (AIC = 875.8; Table S1). Both total area (1.9556 £0.1894 SE, z =

443  10.326, p <0.01) and occurrence density (1.4503 £0.1496 SE, z=9.696, p < 0.01)

444  were strong positive predictors of species diversity (Table 1).

445

446  Results from model-based inference aligned with patterns observed in scatterplots, which
447  showed moderate positive correlations between species diversity and total area (Pearson’s r =
448  0.51, p <0.05; Figure 3A), and a steep but variable trend for occurrence density (r = 0.53, p
449  <0.05), particularly at higher values (Figure 3B). A slightly weaker positive correlation was
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found between species diversity and topographic relief, with an initial increase that flattened
at broader elevational ranges (r = 0.41, p < 0.05; Figure 3C).

Table 1. Coefficient estimates from generalized linear models (negative binomial) relating
species diversity to total area, occurrence density, and topographic relief for priority
conservation areas in the Philippines. Total area and occurrence density were log-
transformed, and topographic relief was square-root-transformed; all predictors were scaled
and mean-centered. Significance assessed at a = 0.05(*).

Predictors Estimate £ SE z-value  p-value
Conserved Areas

Intercept 0.6405 + 0.1423 4.502 <0.01*
Total Area 1.9556 + 0.1894 10326  <0.01*
Occurrence Density 1.4503 + 0.1496 9.696 <0.01*
Topographic Relief 0.0021 £0.1645 0.013 0.989
Area * Topographic Relief -0.2322 £0.1430 -1.624 0.104
Key Biodiversity Areas

Intercept 2.8210+0.1279 22.049  <0.01*
Total Area 0.8974 + 0.1553 5.780 <0.01*
Occurrence Density 1.3127 + 0.1868 7.027 <0.01*
Topographic relief 0.2019 £ 0.1435 1.407 0.1593
Area * Occurrence Density 0.5501 +0.2188 2.514 0.0119*
Area * Topographic Relief -0.4243 +£0.1439 -2.948  0.0032*

Occurrence Density * Topographic Relief -0.5392 £ 0.2362 -2.283  0.0225*

For KBAs, the best-supported model additionally included interactions between topographic
relief and both total area and occurrence density (AIC = 779.2; Table S2). Occurrence
density (1.3127£0.1868 SE, z=7.027, p < 0.01) was a stronger predictor than total area
(0.8974+0.1553 SE, z=5.780, p < 0.01), and their interaction was positive (0.5501 +0.2188
SE, z=2.514,p=0.0119) (Table 1). Topographic relief had no significant main effect on
species diversity, but its interactions with total area (—0.4243 +0.1439 SE, z=-2.948,p =
0.0032) and occurrence density (—0.5392 +0.2362 SE, z=-2.283, p = 0.0225) were both
significant and negative. These results suggest that topographic relief may modulate
influence of area and sampling effort on observed species diversity in KBAs.

Similar patterns emerged in the scatterplots: species diversity generally increased with total
area, though the relationship flattened at intermediate values before rising again (r = 0.31, p
< 0.05; Figure 3D). A steep initial increase was also observed with occurrence density,
followed by greater variability at higher densities (r = 0.46, p < 0.05; Figure 3E). The
association between topographic relief and species diversity was also weak but positive (r =
0.30, p < 0.05; Figure 3F), resembling the pattern observed in CAs.
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492  Figure 3. Scatterplots showing species diversity in relation to total area, occurrence density,
493  and topographic relief for conserved areas (top panels) and key biodiversity areas (bottom
494  panels). Dashed line represents LOESS-smoothed trend, with grey shaded area indicating
495  95% confidence interval. Each point represents a priority conservation area; colors denote
496 interacting variables with significant effects or inclusion in the best-fit generalized linear

497  models. No interactions were significant in the top panels, although area x topographic relief
498 interaction was retained in the best model. Y-axis is fixed at a lower limit of O for better

499  visualization. Pearson correlation coefficients (r) and p-values are shown; significance is

500  based on o= 0.05.

501

502  Predictors of sampling effort across conservation areas

503

504  Sampling effort in PCAs was best explained by models that included total area, topographic
505  relief, their interaction, and biogeographic subregion (PAIC) as a categorical predictor (AIC
506 =1348.4 for CAs; AIC =1172.9 for KBAs; Tables S3—S4). In CAs, both total area (1.1765 +
507 0.3709 SE, z=3.172, p =0.0015) and topographic relief (1.2525 = 0.3938 SE, z=3.181,p =
508  0.0015) were strong positive predictors of sampling effort (Table 2). However, their

509 interaction had a significant negative effect (—0.6413 + 0.2683 SE, z=-2.390, p = 0.0168),
510  suggesting that the combined influence of total area and topographic relief on sampling

511  density may diminish at high values. Sampling effort was highest in Luzon, the reference
512 level, among all PAICs. No other PAIC differed significantly from Luzon, except West

513  Visayas, which exhibited comparably higher sampling effort (3.3097 + 0.8625 SE, z = 3.827,
514 p<0.01).
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515

516 In KBAs, the same model structure identified a strong positive effect of the intercept (Luzon)
517  and weak individual effects of total area and topographic relief (Table 2). Although total area
518  (0.3027 +0.2802 SE, z=1.080, p = 0.2801) and topographic relief (0.4453 + 0.2790 SE, z =
519 1.596, p=0.1105) were not individually significant, the interaction term showed a

520  marginally significant negative effect (—0.3679 = 0.1937 SE, z=-1.899, p = 0.0576). Luzon,
521  the reference level, had the highest sampling effort among PAICs. Only the Sulu Island

522 Group had significantly lower sampling effort compared to Luzon (—4.7948 + 1.5603 SE, z =
523 =3.073, p=0.0021), possibly reflecting logistical challenges or reduced field access in this

524 region.

525

526

527  Table 2. Coefficient estimates from generalized linear models (negative binomial) relating

528  number of occurrence records to total area and topographic relief for priority conservation

529 areas in the Philippines. Total area was log-transformed and topographic relief was square-

530  root-transformed; continuous predictors were scaled and mean-centered. Significance

531 assessed at a = 0.05(*). PAIC = Pleistocene Aggregate Island Complexes. Reference level

532 for PAIC is Luzon.

533
Predictors Estimate £ SE z-value p-value
Conserved Areas
Intercept 3.3381£0.3142 10.62 <0.01 *
Total Area 1.1765 £ 0.3709 3.172 0.0015 *
Topographic Relief 1.2525 + 0.3938 3.181 0.0015 *
PAIC: Mindanao 0.1343 £ 0.4606 0.292 0.7706
PAIC: Mindoro 0.5381 + 1.5006 0.359 0.72
PAIC: Palawan 0.4310+£1.0143 0.425 0.6709
PAIC: Romblon Island Group 1.9644 + 1.9589 1.003 0.3160
PAIC: Sulu Island Group 0.4890 +2.8422 0.172 0.8634
PAIC: West Visayas 3.3097 £ 0.8625 3.837 0.0001 *
Area * Topographic Relief -0.6413 +0.2683 -2.390 0.017 *
Key Biodiversity Areas
Intercept 4.9874 +0.3419 14.59 <0.01 *
Total Area 0.3027 £ 0.2802 1.080 0.28
Topographic Relief 0.4453 +£0.2790 1.596 0.1105
PAIC: Mindanao 0.3802 + 0.4864 0.782 0.4345
PAIC: Mindoro -0.7675 + 0.7252 -1.058 0.29
PAIC: Palawan 0.4971 £ 0.8467 0.587 0.5571
PAIC: Romblon Island Group 0.5533 +1.1229 0.493 0.6222
PAIC: Sulu Island Group -4.7948 + 1.5603 -3.073 0.0021 *
PAIC: West Visayas 1.1147 £ 0.5995 1.859 0.0630
Area * Topographic Relief -0.3679 +0.1937 -1.899 0.0576

534

535
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These model-based findings were broadly consistent with scatterplot analyses. Among CAs,
weak positive correlations were observed between sampling effort and both total area (r =
0.32, p <0.05; Figure 4A) and topographic relief (r = 0.27, p < 0.05; Figure 4B). For KBAs,
correlations were weaker (r = 0.24 for total area, Figure 4C; and r = 0.19 for topographic
relief, Figure 4D; both p < 0.05), likely reflecting influence of zero values or sampling gaps

across several sites.
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Figure 4. Scatterplots showing number of occurrence points in relation to total area
and topographic relief for conserved areas (top panels) and key biodiversity areas
(bottom panels). Dashed line represents LOESS-smoothed trend, with grey shaded area
indicating 95% confidence interval. Each point represents a priority conservation area;
colors indicate interacting variables with significant effects. Y-axis is fixed at a lower
limit of 0 for better visualization. Pearson correlation coefficients (r) and p-values are

shown; significance at a = 0.05.
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DISCUSSION
Uneven spatial diversity pattern reflects sampling biases

Sustained biodiversity documentation across the Philippines has enabled spatial mapping of
observed species diversity of amphibians and squamate reptiles, revealing stark patterns of
sampling biases. More than two-thirds of grid cells contain either zero or only 1-10
documented species, while comparatively fewer cells (~2%) exhibit higher species diversity
levels. This pronounced disparity reflects persistent spatial biases in biodiversity knowledge.
Observed species diversity patterns likely indicate where sampling has been more intensive,
rather than accurately representing underlying ecological or biogeographic factors—a pattern
that is persistent across many biodiversity-rich areas globally (Azovsky, 2011; Engemann et
al., 2015; Grattarola et al., 2020; Hughes et al., 2024). Addressing these biases is critical not
only for improving knowledge of Philippine biodiversity but also for ensuring that
conservation policy, priority-setting, and management decisions rest on a more complete and
representative knowledge base.

A recent comprehensive review of Philippine herpetology revealed substantial geographic
gaps in field sampling across the archipelago (see Meneses et al., 2024 for a detailed
discussion). Our findings broadly align with these observations but offer additional fine-scale
information by integrating curated species point data and grid-based species richness
estimates. This approach not only identifies where sampling has occurred but also quantifies
its intensity, demonstrating that higher diversity values are associated with well-sampled
sites. Notably, we found that a disproportionate share of documented herpetological diversity
is concentrated in a few intensively surveyed areas—mostly in Luzon, the largest island, and
in West Visayas, comprising most central islands—where collection efforts in recent decades
have been more intense (Brown et al., 2001, 2012; Meneses et al., 2024). High-resolution
data of this kind are critical for accurately representing spatial patterns of sampling effort,
thereby guiding resources and research efforts towards poorly explored regions. Furthermore,
by incorporating species point data from different sources, we recovered diversity data in
areas that would otherwise appear as knowledge gaps, such as the Sulu Archipelago in the
south (Meneses et al., 2024); although sampling effort is still disproportionately lower in this
region. As such, given that biodiversity data in the Philippines are fragmented, reliance on
selective or incomplete datasets for any synthesis studies can introduce substantial bias
(Pitogo et al., 2025).

Priority conservation areas (PCAs) are relatively well-sampled in proportion to their total
area, yet herpetofaunal knowledge across them remains limited and uneven. Despite these
gains, many PCAs still lack species records altogether or may have data that are not
accessible in digital form. Where species data are lacking in PCAs, they are however
available outside delineated boundaries, which may suggest persistent issues associated with
sampling within PCAs, including permitting and other bureaucratic processes (particularly
for legislated protected areas), logistical access, and security constraints (Sanguila et al.,
2016; Brown et al., 2020; Meneses et al., 2024; see Figure 5). Although well-surveyed sites
include some of the country’s known PCAs, vast portions of other mountain ranges and
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many smaller islands remain poorly sampled or lack species data that are readily accessible
for broader scientific and conservation use. Expanding targeted field-based surveys beyond
established PCAs—and ensuring that resulting data are made publicly and digitally available
for mobilization—remains urgently needed to support conservation initiatives grounded in
accurate, comprehensive biodiversity knowledge (D1 Minin & Toivonen 2015; Grattarola et
al., 2020).

Sampling biases skew knowledge toward large conservation areas

Documenting biodiversity is critical in areas where such information can directly inform
protection and management decisions. Conserved areas remain central to efforts aimed at
safeguarding biodiversity across genetic, species, and ecosystem levels (Watson, 2014; Jonas
et al., 2021). Complementing these, KBAs, though lacking formal protection or management,
are identified as priority sites for future conservation efforts (Eken et al., 2004). Thus,
biodiversity data support monitoring and adaptive management within CAs and guiding
prioritization and investment in KBAs. However, digitally accessible records for Philippine
herpetofauna show strong uneven documentation: some sites are well-surveyed, others
poorly sampled, and many contain no (digitally accessible) records. These disparities mask
true biodiversity patterns and pose significant challenges for efficient, evidence-based
conservation planning (Hoffman, 2022).

Observed species diversity and sampling effort for herpetofauna were generally higher in
larger PCAs. However, this relationship weakens with increasing topographic relief. Our
results suggest that although larger areas tend to receive more sampling effort (and have
higher observed diversity), this effect weakens in high mountainous areas. The significant
negative interaction between topographic relief and total area on observed diversity contrasts
with hypothesis that topographic complexity, by virtue of hosting diverse habitat types,
should support higher species diversity (Ricklefs & Lovette, 1999; Gotelli, 2008; Engemann
et al., 2015; Tenorio et al., 2023), an inconsistency that likely reflects sampling limitations.
Mountainous areas in the Philippines, despite their potential for high species richness, are
often poorly sampled likely due to logistical constraints, along with other factors (Pitogo &
Saavedra 2023; see Figure 5). This hypothesis is especially supported by our results, which
recovered significant negative interaction effects between topographic relief and sampling
effort. These challenges systematically bias biodiversity knowledge away from
topographically complex areas, which are some of the most ecologically critical and
conservation-relevant regions in the country (Heaney, 2004; Brown et al., 2013).

Data limitations are not confined to large mountain ranges. Smaller conservation areas,
particularly those in island environments, also suffer from substantial biodiversity knowledge
gaps (also see Fidelino et al., 2025). Although this pattern was not statistically prominent in
our model-based inference, it was evident in our exploratory data analyses and visualizations
(e.g., small-sized, low-topographic-relief PCAs in Figures 3—4). Many small island
conservation areas in the Philippines remain poorly sampled despite yielding newly
discovered species and harboring unique, range-restricted taxa (McGuire & Alcala, 2000;
Allen et al., 2004; Heaney et al., 2006; Brown et al., 2011; Oliveros et al., 2011; Siler et al.,
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2012; Reyes et al., 2017; Barley et al., 2020; Clores et al., 2021; Supsup et al., 2021). These
systems face disproportionate threats from climate-driven sea-level rise, extreme weather
events, invasive species, and habitat loss (Russell & Kueffer, 2019), yet lack the baseline
biodiversity data for adaptive management. Targeted surveys are urgently needed in these
areas to document species presence and build taxonomic and ecological knowledge base
required for effective conservation in islands (Borges et al., 2016). Without action, island
ecosystems risk becoming critical blind spots in the country’s conservation efforts.

Data gaps and biases persist, but diverse sources can address them

The majority of digitally accessible knowledge on Philippine herpetofauna comes from
natural history collections. These collections represent over a century of fieldwork that has
shaped taxonomic and systematics knowledge, increasing herpetofaunal diversity estimates
in the country (Brown et al., 2001; Meneses et al., 2024). As such, specimen-associated data
serve as a vital resource for improving knowledge on biodiversity patterns (Ball et al., 2025;
Blades et al., 2025). They also support large-scale ecological studies, which depend on
spatially referenced records to examine broad biodiversity trends and guide conservation
planning (Jetz et al., 2012; Heberling et al., 2021; Orr et al., 2022). Although many regions
remain underrepresented in biodiversity data, it is noteworthy that areas with limited
contemporary surveys—as mentioned earlier, Sulu Archipelago, where fieldwork has been
limited (Meneses et al., 2024)—still hold valuable records preserved through historical
collections.

In areas where specimens are lacking, citizen science provides a valuable complementary
data stream to help address distributional biases. Online biodiversity platforms (Amano et al.,
2016; Della Rocha et al., 2024; Mason et al., 2025) and social media (Barve, 2014;
Chowdhurry et al., 2023; Tabeta & Bejar, 2025) have become particularly useful where
museum records are absent or limited. Although still emerging in Philippine herpetology (but
see Madera, 2019; Acuia et al., 2021), citizen-science contributions are already well
established in other taxonomic groups. For example, active birding communities regularly
contribute to platforms like eBird (Sullivan et al., 2014) and collaborate with researchers and
biodiversity managers to inform site-level conservation efforts in the Philippines (e.g., Pitogo
et al., 2024). Another notable initiative is Co’s Digital Flora of the Philippines (Barcelona et
al., 2013), where citizen scientists and taxonomists work together to maintain a real-time
overview of Philippine flora. At least 54% of the country’s vascular plant species have been
photo-documented, many with associated geographic coordinates (Pelser et al., 2011
onwards). These examples show that citizen-science contributions to observed diversity may
be more pronounced in taxonomic groups with active, organized communities driving such
efforts. Despite challenges related to data quality and metadata completeness, carefully
curated citizen-science records can enhance biodiversity knowledge, particularly in remote or
poorly sampled regions (Amano et al., 2016; Pernat et al., 2024).

Another important yet often overlooked source of biodiversity data comes from formal
surveys that do not involve specimen collection and eventual deposition in natural history
museums (e.g., Binaday et al., 2017; Gojo-Cruz et al., 2018; Pitogo et al., 2021; Maglangit et
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al., 2022; Decena et al., 2023). And if there are such records, they are often not digitized and
published in publicly accessible domains, especially when deposited in university-based
museums. Many in-country scientists conduct fieldwork that reports valuable records
published in peer-reviewed journals, yet these data are rarely archived in open-access
databases such as GBIF (Beck et al., 2013). Such studies frequently document species in
poorly sampled areas in the Philippines, providing crucial complementary information
(Meneses et al., 2024). Although valuable for expanding species distribution knowledge,
many of these studies do not provide specific geographic coordinates of areas sampled,
which are limited in their use for geospatial research; thus, submission of spatial occurrences
to online databases like GBIF is highly encouraged (Hochkirch et al., 2021). In addition, a
wealth of biodiversity data remains locked in grey literature—government reports, university
theses, and project documents—that are not digitally accessible but are often used in site-
level management. Incorporating these sources into public repositories and ensuring they are
properly curated would improve national biodiversity coverage (Cadotte et al., 2025).

Disparate biodiversity data types underscores the need for standardized archiving practices
(Wieczorek et al., 2012; Ball-Damerow et al., 2019; Marques et al., 2024) and greater
adherence to best-practice guidelines in dealing with big data (Costello et al., 2014; Hughes
et al., 2024). Although these varied data streams help fill distributional gaps, they often differ
in quality, accessibility, and curation. These differences are especially true for non-specimen-
based data, which typically lack the standardized metadata associated with museum
specimens. To maximize their scientific utility, we recommend that non-specimen-based
records be accompanied by metadata, including GPS coordinates (including uncertainty),
observation date and time, natural history notes, among others. Robust metadata not only
enhances credibility and utility of individual records but also facilitates their integration into
broader ecological, biogeographic, and conservation research (Jetz et al., 2012).

Scaling biodiversity documentation to meet conservation targets

The Kunming-Montreal Global Biodiversity Framework, adopted in 2022, sets an ambitious
goal: to protect 30% of the world’s terrestrial and marine ecosystems by 2030, building on
the earlier Aichi Target 11 (Robinson et al., 2024). Achieving this target requires more than
simply expanding protected area coverage; it also demands effective management that
delivers measurable benefits for biodiversity (CBD, 2022). These outcomes depend on
robust, accurate biodiversity data, particularly within PCAs (Mallari et al., 2013; Buckland &
Johnston, 2017; Wenk et al., 2024). However, our results show that persistent data gaps and
biases, especially in large mountainous and island conservation areas, continue to shape
observed biodiversity data patterns. Although many PCAs with apparent data gaps may in
fact hold biodiversity data, their lack of digital accessibility limits inclusion in national-scale
assessments of sampling effort. This limitation hinders resource allocation for improved
documentation, reduces opportunities for external vetting and expert curation of data, and
impedes integration into broader datasets that inform national conservation planning (Ball-
Damerow et al., 2019; Grattarola et al., 2020; Orr et al., 2022).
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Addressing the challenge of insufficient biodiversity documentation requires developing and
implementing enabling mechanisms to overcome constraints in site-level primary data
collection, which comprises the majority—if not all—of available biodiversity data (Figure
5). This includes prioritizing biodiversity documentation within national conservation
policies and planning frameworks (e.g., Philippine Biodiversity Strategy and Action Plan,
PBSAP 2024-2040) to strengthen institutional support for field-based activities, especially
within PCAs (Soberon, 2022). For example, streamlining research permitting processes, fully
aligned with Indigenous Peoples’ rights and national access and benefit-sharing policies, can
reduce bureaucratic barriers to ethical and standardized data collection (Britz et al., 2020;
Horckirch et al., 2021). Engaging Indigenous Peoples and local communities as
collaborators, and supporting culturally appropriate awareness and communication
initiatives, can further foster equitable partnerships and mutual knowledge exchange
(Dawson et al., 2024). Financial mechanisms within PAs, such as the Integrated Protected
Area Fund, can be leveraged to support student-led and locally collaborative field research.
Local or subnational government policies and support mechanisms are also critical for
ensuring logistical coordination, safe access, and community involvement in fieldwork.

Logistical Bureaucratic Financial / Technical Socio-cultural
Limited accessibility Overlapping permit requirements Limited funding for field-based studies Limited awareness and appreciation
(accessible by foot or motorcycle; from different authorities / agencies . . . of biodiversity research
far from air/seaports) Limited local taxonomic expertise
flconBEntanCt ol f Cultural or language barriers
o permitting process Limited knowledge of sampling design
Security ;?ks du_e @ and field techniques
local conflict or insurgency Resistance to sustained Distrust or hesitance from Indigenous
. . . collections-based research Limited training in specimen collection, Peoples and local communities
Difficult terrain and field conditions, preservation, and deposition towards researchers
especially during typhoon season Limited appreciation of to natural history museums
long-term biodiversity studies Conflict of interest
Inadequate data management systems
and training for local researchers

Constraints in Field-based Biodiversity Data Collection Efforts

Enabling Mechanisms

Mainstream biodiversity documentation in the National Biodiversity Strategy and Action Plan (NBSAP) and across relevant national government agencies (Bureaucratic)
Issue a national directive to support ethical and standardized biodiversity research and streamline permitting processes (Bureaucratic / Logistical)

(@ a national r dtable to identify priority data collection areas and taxa and formalize the resulting plan for sustained implementation (Bureaucratic)

Promote institutional mechanisms that enable equitable international research partnerships and adherence to national ethics and data-sharing policies (Bureaucratic)
Mobilize resources from government agencies and protected areas (e.g., Integrated Protected Area Fund) for field-based biodiversity surveys (Financial)

Fund and strengthen biodiversity science in university curricula to build long-term research capacity and a skilled workforce (Financial / Technical / Logistical )
Engage stakeholders through education and awareness on the importance of sustained biodiversity documentation (Bureaucratic / Socio-cultural)
lize benefit-sharing with Indigenous Peoples and Local Communities to promote equitable, inclusive, and collaborative field research (Socio-cultural)

© P NOWMAEWN

. Build and strengthen partnerships among academe, LGUs, and national agencies to ensure safe field access and logistics for fieldwork (Bureaucratic / Logistical)
10. Develop robust data management infrastracture and capacity-building initiatives for local researchers and national journals publishing biodiversity data (Technical)

Improved Spatial and Taxonomic Coverage
of Primary Biodiversity Data

Figure 5. Constraints in field-based biodiversity data collection and corresponding enabling
mechanisms to improve primary biodiversity data coverage. Each mechanism primarily
addresses one or more constraint types (italicized text).
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Beyond site-level interventions, targeted national funding for species discovery and
taxonomic capacity-building can incentivize early-career researchers to pursue field-based
work (Britz et al., 2020; Abrahamse et al., 2021). These efforts should be complemented by
investments in biodiversity science within university curricula (Soberén & Peterson, 2004),
ensuring students are trained in both theory and practice. Addressing the limited data
management capacity among local researchers is also critical for promoting effective data-
sharing, enhancing the verifiability and utility of biodiversity studies. Comprehensive
training programs and standardized data systems can help overcome this barrier, ensuring the
production of high-quality, accessible datasets. At the same time, the increasing diversity of
data contributors underscores the need for a streamlined and curated national biodiversity
data infrastructure (Giintsch et al., 2025). Such a platform should ensure that biodiversity
data, especially those generated from PCAs, are digitally and publicly accessible, enabling
diverse stakeholders to collectively contribute to and benefit from biodiversity knowledge.
Ultimately, these in-country initiatives must be paired with stronger domestic and
international institutional mechanisms, such as equitable collaboration standards and data-
sharing agreements, to ensure that non-monetary benefits from biological resource use are
meaningfully shared with local collaborators and inform national policy and conservation
planning (Collela et al., 2023).

Finally, scaling biodiversity documentation beyond existing PCAs can guide the
identification of new priority sites for protected area establishment. Our findings show that
several well-sampled, high-diversity areas remain outside current PCAs, many overlapping
with only partially protected KBAs, underscoring opportunities to align future CA expansion
with empirically documented biodiversity patterns. The updated national biodiversity
strategy and action plan (PBSAP 2024-2040) targets protecting 24% of terrestrial areas
through CAs (DENR-BMB, 2025), yet only ~15% are currently protected. Prioritizing well-
sampled, high-diversity areas for protection will be critical to achieving this goal. Our
results, however, only focus on herpetofauna and similar data gaps and biases likely affect
many taxonomic groups in the Philippines (Berba & Matias, 2022; Pitogo, 2025), reinforcing
the need for broader, inclusive biodiversity documentation. Building a robust and
representative biodiversity knowledge base—well-curated and aligned with FAIR (findable,
accessible, interoperable, reusable) and CARE (collective benefit, authority to control,
responsibility, ethics) principles—will require sustained collaboration among scientists,
conservation practitioners, and institutions, and critically, with Indigenous Peoples and local
communities (Jetz et al., 2012; Schmeller et al., 2017; Carroll et al., 2021). Strengthening
such collective and inclusive efforts is essential for transforming biodiversity knowledge into
tangible conservation outcomes and ensuring the Philippines meets its national and global
biodiversity commitments.
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Table S1. Stepwise model selection using AIC for species richness as a function of area,
occurrence density, and topographic relief (species diversity model for conserved areas). The
starting model included all main effects and their three-way interaction. The final model
retained only two main effects and one two-way interaction.

Step Model Terms Action Df AIC
0 log Area x log_Occurrence X Start model —  877.56
sqrt Topo Relief
1 log Area + log Occurrence + Dropped 3-way 1 876.73
sqrt_Topo_ Relief + interaction
log Area:log_Occurrence +
log Area:sqrt_ Topo_Relief +
log Occurrence:sqrt Topo Relief
2 Same as above but without Dropped 2-way 1 876.49
log Occurrence:sqrt_ Topo Relief interaction:
log_Occurrence x
sqrt_Topo_ Relief
3 log Area + log Occurrence + Dropped 2-way 1 875.77
sqrt_Topo_Relief + interaction: log_Area x
log Area:sqrt Topo Relief log Occurrence
4 Same as above Final model (no change @ —  875.77

improves AIC)

Table S2. Stepwise model selection using AIC for species richness as a function of area,
occurrence density, and topographic relief (species diversity model for key biodiversity
areas). The starting model included all main effects and their three-way interaction. The final

model retained all main effects and two-way interactions, excluding the three-way

interaction.
Step Model Terms Action Df AIC
0 log_Area x log_Occurrence X Start model —  780.98
sqrt Topo Relief
1 log Area + log Occurrence + Dropped 3-way 1 779.22
sqrt Topo_ Relief + interaction
log Area:log_Occurrence +
log_Area:sqrt Topo_Relief +
log Occurrence:sqrt Topo Relief
2 Same as above Final model (no —  779.22

change improves

AIC)
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Table S3. Stepwise model selection using AIC for occurrence count as a function of area,
topographic relief, and biogeographic subregion or PAIC (sampling effort model for
conserved areas). The starting model included a two-way interaction between area and relief,
and an additive effect of PAIC level.

Step Model Terms Action Df AIC
0 log Area x Start model — 1348.35
sqrt_Topo Relief + PAIC
1 log Area + Dropped interaction: log_Area x 1 1351.50
sqrt_Topo_ Relief + PAIC sqrt_Topo Relief
2 log Area + Dropped PAIC 6 1354.20

sqrt_ Topo_ Relief

Table S4. Stepwise model selection using AIC for occurrence count as a function of area,
topographic relief, and biogeographic subregion or PAIC (sampling effort model for key
biodiversity areas). The starting model included a two-way interaction between area and
relief, and an additive effect of PAIC level.

Step Model Terms Action Df AIC
0 log Area % sqrt Topo_Relief + Start model —  1172.87
PAIC
1 log Area x sqrt Topo Relief Dropped PAIC 6 1173.30
2 log Area + sqrt Topo Relief+ Dropped interaction: log Area 1 1174.20
PAIC x sqrt Topo Relief
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Figure S1. Model diagnostic results from DHARMa for the best-fit species diversity model
for conserved areas (Species Diversity ~ log Area + log Occurrence + sqrt_ Topo Relief +
log Area:sqrt Topo_Relief). Upper-right panel shows a Q—Q plot used to detect deviations
from the expected distribution, along with tests for distribution (Kolmogorov—Smirnov),
dispersion, and outliers. Additional panels show scaled residuals plotted against predicted
values and each predictor. Simulation outliers, data points falling outside the range of
simulated values, are highlighted as red stars. Red line indicates statistically significant
deviations from model expectations. DHARMa zero-inflation test is also included.
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1506  Figure S2. Model diagnostic results from DHARMa for the best-fit species diversity model
1507  for key biodiversity areas (Species Diversity ~ log Area + log Occurrence +

1508  sqrt Topo Relief + log Area:log Occurrence + log Area:sqrt Topo Relief +

1509  log Occurrence:sqrt Topo Relief). Upper-right panel shows a Q—Q plot used to detect

1510  deviations from the expected distribution, along with tests for distribution (Kolmogorov—
1511  Smirnov), dispersion, and outliers. Additional panels show scaled residuals plotted against
1512  predicted values and each predictor. Simulation outliers, data points falling outside the range
1513  of simulated values, are highlighted as red stars. Red line indicates statistically significant
1514  deviations from model expectations. DHARMa zero-inflation test is also included.
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1551  Figure S3. Model diagnostic results from DHARMa for the best-fit sampling effort model
1552  for conserved areas (No. of Occurrence Records ~ log_Area x sqrt_Topo_Relief + PAIC).
1553  Upper-right panel shows a Q—Q plot used to detect deviations from the expected distribution,
1554  along with tests for distribution (Kolmogorov—Smirnov), dispersion, and outliers. Additional
1555  panels show scaled residuals plotted against predicted values and each predictor. Simulation
1556  outliers, data points falling outside the range of simulated values, are highlighted as red stars.
1557  Red line indicates statistically significant deviations from model expectations. DHARMa
1558  zero-inflation test is also included.
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Figure S4. Model diagnostic results from DHARMa for the best-fit sampling effort model
for key biodiversity areas (No. of Occurrence Records ~ log Area x sqrt_ Topo_ Relief +
PAIC). Upper-right panel shows a Q—Q plot used to detect deviations from the expected
distribution, along with tests for distribution (Kolmogorov—Smirnov), dispersion, and
outliers. Additional panels show scaled residuals plotted against predicted values and each
predictor. Simulation outliers, data points falling outside the range of simulated values, are
highlighted as red stars. Red line indicates statistically significant deviations from model
expectations. DHARMa zero-inflation test is also included.
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1641  Figure S5. Map of the Philippines showing (A) overlap between forest cover, priority

1642  conservation areas (PCAs), and key biodiversity areas (KBAs), and (B) distribution of
1643  observed amphibian and squamate reptile diversity across all data types outside PCAs and
1644  KBAs, highlighting that many well-sampled sites with higher observed diversity lie beyond
1645  established conservation areas.
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