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ABSTRACT 17 
 18 
Where and how species are sampled can shape biodiversity knowledge, spatial patterns, and 19 
data-driven conservation. In many Global South biodiversity hotspots, sampling remains 20 
uneven, and available data often lack the synthesis needed to assess region-wide gaps for 21 
effective conservation planning and priority-setting. This shortfall is common within 22 
conserved areas and key biodiversity areas (hereafter ‘priority conservation areas’ or PCAs). 23 
We demonstrate this case in the Philippines, one of the most biodiverse countries in the 24 
world, where longstanding biodiversity research and growing policy momentum support 25 
efforts to expand coverage of conserved areas. Drawing on over a century of species 26 
occurrence records made digitally accessible, we compiled and manually curated these data 27 
to assemble and analyze information on Philippine amphibians and squamate reptiles from 28 
multiple sources, assessing the spatial distribution of observed diversity in relation to PCAs. 29 
Results reveal strong spatial biases, with preserved specimens comprising the majority of 30 
records and largely shaping observed diversity patterns. Citizen-science data complement 31 
already well-sampled regions, while records from peer-reviewed literature contribute 32 
valuable documentation in poorly sampled areas. PCAs are proportionally well-sampled, 33 
although gaps and biases remain. Sampling effort and observed diversity were higher in 34 
larger PCAs, but this positive area effect diminishes with increasing topographic relief, 35 
highlighting large mountain ranges as persistent blind spots in biodiversity documentation. 36 
Notably, some areas of higher diversity occur outside established PCAs. We discuss 37 
implications of these biases and propose enabling mechanisms to improve primary 38 
biodiversity data collection. This study affirms the importance of integrating digitally 39 
accessible biodiversity data from multiple sources in revealing sampling gaps and biases, 40 
guiding future studies towards poorly sampled areas and informing conservation priorities. 41 
 42 
Keywords: Philippines, biodiversity data, knowledge shortfalls, protected areas, mountains, 43 
macroecology 44 
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INTRODUCTION 45 
 46 
Biodiversity data remain unevenly distributed across taxonomic groups and geographic 47 
regions, with pronounced biases against global biodiversity hotspots (Hortal et al., 2015; 48 
Hughes et al., 2021; Moura & Jetz, 2021; Ondo et al., 2024; Ball et al., 2025). Several factors 49 
contribute to these biases, including limited research capacity (Barber et al., 2014; Zhang et 50 
al., 2023), preferential focus on certain taxonomic groups (Titley et al., 2017; Moura & Jetz, 51 
2021; Ondo et al., 2024) and charismatic taxa (Troudet et al., 2017; Guénard et al., 2025), 52 
ease of site accessibility (Oliveira et al., 2016; Mandeville et al., 2022; Penhacek et al., 53 
2025), and prevailing tendency to conduct research in areas of special interest (Sastre & 54 
Lobo, 2009; Mentges et al., 2021). As a result, many regions and their wildlife remain poorly 55 
sampled—and where data exist, they are often not digitally accessible or fall into 56 
“biodiversity blind spots”, obscuring biodiversity patterns (Ball et al., 2025). These sampling 57 
biases can hinder robust macroecological analyses and obstruct evidence-based conservation 58 
planning (Jetz et al., 2012; Engemann et al., 2015; Santini et al., 2021; Diniz-Filho et al., 59 
2023; Hughes et al., 2024), particularly at national scales where most conservation policies 60 
and management actions are implemented (Grattarola et al., 2020; Perino et al., 2021, 61 
Soberón, 2022). Therefore, identifying where biodiversity data exist, for which taxa, and to 62 
what extent is essential for proactively addressing these biases and strengthening the 63 
knowledge base needed for effective conservation. 64 
 65 
Challenges in biodiversity data availability are persistent even within global biodiversity 66 
hotspots, like the Philippines, where gaps and biases in data coverage skew biodiversity 67 
knowledge toward certain regions and taxonomic groups (Berba & Matias, 2022; Meneses et 68 
al., 2024; Pitogo, 2025). As a megadiverse and biogeographically unique country threatened 69 
by habitat loss (Brown et al., 2013; Huais et al., 2025), the Philippines urgently requires 70 
robust and data-informed conservation strategies. However, limited availability and 71 
discoverability of biodiversity data, and a lack of information on how these data are spatially 72 
distributed, constrains efforts to evaluate sampling completeness and to guide national 73 
biodiversity strategies and research priorities (Soberón & Peterson, 2009; Soberón, 2022). 74 
The need for synthesized biodiversity data to inform conservation planning is especially 75 
urgent, as biodiversity loss and the global momentum under the Kunming-Montreal Global 76 
Biodiversity Framework (CBD, 2022; Orr et al., 2022) have prompted policy responses to 77 
expand protected areas (PAs) and recognition of other effective area-based conservation 78 
measures (OECMs), now covering approximately 15% of the Philippines’ land area (ASEAN 79 
Centre for Biodiversity, 2023). This expansion not only demands effective management 80 
grounded in ecologically representative, well-connected, and equitably governed networks of 81 
PAs and OECMs (CBD, 2022) but also must deliver measurable, positive outcomes for 82 
biodiversity (Maxwell et al., 2020). A critical first step towards achieving such outcomes is 83 
to strengthen biodiversity data by improving sampling coverage and accessibility (Soberón & 84 
Peterson 2009; Mallari et al., 2013; Jetz et al., 2019; Grattarola et al., 2020; Hochkirch et al., 85 
2021; Soberón, 2022; Urbano et al., 2023).  86 
 87 
A key step toward ensuring that biodiversity knowledge of a particular area is sufficient to 88 
support conservation strategies is to assess where biodiversity data are spatially distributed 89 
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and how these patterns align with conserved areas (PAs and OECMs) and key biodiversity 90 
areas (collectively referred to herein as ‘priority conservation areas’ or PCAs). Such an 91 
approach remains lacking for the Philippines despite long-standing efforts to document 92 
wildlife in this megadiverse, global biodiversity hotspot (Brown et al., 2001; Heaney, 2001; 93 
Pelser et al., 2011; Heaney et al., 2016; Tanalgo & Hughes, 2018; Allen, 2020; Gamalo et al., 94 
2021; Berba & Matias, 2022; Meneses et al., 2024; delos Angeles et al., 2025; Fernandez et 95 
al., 2025; Balisco & Liao 2025; Pitogo, 2025). While data deficiencies affect many 96 
taxonomic groups, some are better represented due to sustained research and collection 97 
efforts. Herpetofauna offer a compelling case for such analysis in the Philippines: the group 98 
has benefited from over a century of active and sustained research effort (Brown et al., 2001; 99 
Meneses et al., 2024). In fact, recent years have seen an acceleration of engagement in 100 
amphibian and reptile studies, with increasing numbers of researchers, broader types of 101 
investigations, and expanding publication output (Meneses et al., 2024), all suggesting that 102 
herpetofauna are a particularly timely and relevant group for such work and that data 103 
availability will likely continue to grow. Endemic herpetofauna are also relatively well-104 
sampled genetically, with voucher specimens housed in museum collections (Pitogo, 2025); 105 
and curated occurrence records are available in substantial volume across peer-reviewed 106 
literature (Diesmos et al., 2015; Leviton et al., 2018). Moreover, reptiles have been shown to 107 
serve as effective surrogates for broader vertebrate biodiversity patterns in KBAs across the 108 
country (Fidelino et al., 2025). Herpetofauna thus provide a valuable lens to evaluate spatial 109 
patterns in biodiversity data for improving country-wide biodiversity documentation and 110 
ensuring that conservation efforts are grounded in the best available evidence. 111 
 112 
Leveraging species data on Philippine herpetofauna spanning ~125 years (1900s–2025) made 113 
digitally accessible, we compiled, manually curated, and analyzed occurrence records to 114 
conduct country-wide spatial assessments of observed diversity of amphibians and squamate 115 
reptiles using multiple data sources. Specifically, we ask: (1) How is observed herpetofaunal 116 
diversity spatially distributed across the Philippines, and how well do these distribution 117 
patterns coincide with PCAs? (2) Which PCAs, and which types, are more thoroughly 118 
sampled? and (3) How do observed biodiversity patterns differ across datasets derived from 119 
museum collections, citizen-science platforms, and peer-reviewed literature? Our findings 120 
offer novel, long-overdue insights into spatial distribution of biodiversity data in the 121 
Philippines, particularly in relation to PCAs. Drawing from our results, we propose and 122 
discuss enabling mechanisms to improve primary biodiversity data collection, strengthening 123 
the knowledge base necessary in assessing management effectiveness for area-based 124 
conservation measures needed in the country (Mallari et al., 2016; Struebig et al., 2025). By 125 
identifying key data shortfalls and sampling biases, this study contributes to the growing 126 
body of empirical evidence underscoring the critical role of integrating digitally accessible 127 
biodiversity data from multiple sources. Such data are essential not only for revealing spatial 128 
and taxonomic gaps to guide future studies towards poorly sampled areas but also for 129 
enabling evidence-informed conservation in one of the world’s most important biodiversity 130 
hotspots. 131 
 132 
 133 
 134 
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MATERIALS & METHODS 135 
 136 
Data assembly and curation 137 
 138 
All georeferenced occurrence records for amphibians and squamate reptiles from the 139 
Philippines were downloaded from the Global Biodiversity Information Facility (GBIF) on 140 
31 January 2025 (amphibians) and 07 February 2025 (squamate reptiles). To reduce data 141 
duplication, we initially excluded records categorized as material citations and retained only 142 
human-observation records from iNaturalist and HerpWatch Pilipinas. These were then 143 
merged with expert-curated species occurrence data from the literature: amphibians from 144 
Diesmos et al., (2015) and snakes from Leviton et al., (2018). To avoid overlap between 145 
GBIF records and these curated datasets, only GBIF records dated post-publication—2015 146 
onwards for amphibians and 2018 onwards for snakes—were retained. For lizards, all GBIF 147 
records were included. Additionally, duplicate field numbers from Sam Noble Oklahoma 148 
Museum of Natural History and Father Saturnino Urios University-Biodiversity Informatics 149 
and Research Center that corresponded to catalogued specimens from the University of 150 
Kansas Natural History Museum (KU) were excluded, with only KU records retained. 151 
Finally, we incorporated verifiable occurrence records of non-museum-catalogued specimens 152 
from peer-reviewed literature compiled by Meneses et al., (2024), along with a few 153 
additional entries. For consistency in categorization, all museum records were treated as 154 
“preserved specimen” records; iNaturalist and HerpWatch Pilipinas as “citizen science” 155 
records; and data from peer-reviewed literature as “material citation” records. 156 
 157 
After initial clean-up, we recovered 471 nominal and candidate species of terrestrial 158 
amphibians and squamate reptiles that have digitally accessible occurrence records. 159 
Occurrence records for each species were then manually curated using currently accepted 160 
taxonomic treatments and synonyms. Each species’ occurrence records were mapped in 161 
QGIS 3.4 Madeira (QGIS Development Team, 2018) to assess spatial accuracy of each point. 162 
Records falling outside the known geographic range of a species and lacking verifiable 163 
documentation were excluded. In cases where a formerly widespread species had been 164 
taxonomically split, historical records were reassigned to currently accepted species name 165 
based on updated diagnostic and distributional information in taxonomic studies. For species 166 
with unclear taxonomic or geographic boundaries, only records supported by verifiable data 167 
(e.g., curated vouchered specimens, occurrences within known distribution supported by 168 
peer-reviewed literature) were retained. Since expert-curated distributional literature for 169 
Philippine lizards is lacking, we adopted an additional measure by comparing our 170 
preliminary range estimates with the Global Assessment of Reptile Distributions (Roll et al., 171 
2017; Caetano et al., 2022). This conservative step was taken to minimize potential 172 
overestimation of species diversity metrics. 173 
 174 
Records not identified to the species level were excluded unless a species name or a 175 
placeholder name (e.g., sp. + island name, sp. + number) could be confidently assigned 176 
without the risk of double-counting (e.g., when only a single species from a genus is known 177 
to occur in the area). Given that the frog genus Platymantis remains taxonomically 178 
unresolved (Brown et al., 2015), a conservative approach that accounts for this uncertainty 179 
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was adopted by including records of candidate species occurring in areas with no known 180 
range overlap with closely related congeners. This strategy minimizes the risk of double-181 
counting should these populations ultimately represent a single species, while also retaining 182 
valuable data that would otherwise be discarded. This decision was informed by 183 
phylogenetic evidence, following Brown et al., (2015).  184 
 185 
All records lacking locality information were discarded. Additionally, records with 186 
coordinates at 16.45°N, 120.55°E and 13°N, 122°E from GBIF were excluded, as the 187 
associated locality descriptions did not match the expected geographic locations. These 188 
coordinates appear to be generalized placeholders rather than accurate site data. 189 
 190 
Statistical analyses 191 
 192 
Mapping herpetological diversity across the Philippines 193 
 194 
Occurrence records for amphibians and squamate reptiles were used to generate a presence–195 
absence matrix (PAM) at a 10-km grid resolution across the Philippines, using 196 
prepare_base_pam function from the R package biosurvey (Nuñez-Penichet et al., 2022). 197 
Separate PAMs were created for (1) all data types, (2) preserved-specimen records, (3) 198 
citizen-science records, and (4) material-citation records. For each PAM, alpha diversity 199 
(species richness) was calculated per 10-km grid cell, and the results were visualized as 200 
spatial maps using QGIS 3.4 Madeira. The resulting maps of herpetological diversity were 201 
overlaid with shapefiles of PCAs to assess spatial overlap between species richness and 202 
coverage area. Shapefiles for PCAs were obtained from the World Database on Protected 203 
Areas (www.protectedplanet.net).  204 
 205 
To assess whether species richness classes were evenly represented across grid cells, a chi-206 
square goodness-of-fit test was conducted using the chisq.test function in R version 4.3.1 (R 207 
Core Team, 2023). Richness values were grouped into nine discrete classes, and the observed 208 
frequency of cells in each class was compared to a uniform distribution, under the 209 
assumption that all classes were equally likely. Expected counts were computed by dividing 210 
the total number of grid cells by the number of richness classes. All expected frequencies 211 
exceeded 5, meeting assumptions of the chi-square test. 212 
 213 
Predictors of herpetological diversity across priority conservation areas 214 
 215 
To quantify species occurrence records and diversity within PCAs, we spatially intersected 216 
occurrence points with PCA boundaries using “Join Attributes by Location” tool in QGIS 3.4 217 
Madeira (input: occurrence points; join layer: PCA polygons; predicate: intersects). The 218 
resulting dataset was exported as a CSV file and processed in R statistical software, where 219 
records without PCA matches were excluded. Data were grouped by PCA to calculate the 220 
number of occurrence records and unique species per PCA. PCAs without intersecting 221 
occurrences were retained with zero counts. Polygon area (in km²) was calculated using 222 
expanse function in the terra package (Hijmans, 2024). Only terrestrial PCAs were included 223 
in the analysis, comprising 207 CAs and 109 KBAs. 224 
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Topographic relief for each PCA was extracted using a Digital Elevation Model (DEM) of 225 
the Philippines downloaded from the CGIAR Consortium for Spatial Information 226 
(https://srtm.csi.cgiar.org/). This DEM, provided in Arc/Info Grid format, was clipped to the 227 
spatial extents of each PCA. Clipping was performed using QGIS’ ‘Clip Raster by Mask 228 
Layer’ tool, with DEM as the input raster and PCA polygon shapefiles as the mask layer. The 229 
resulting clipped DEM layers contained elevation data exclusively within each PCA 230 
boundary. Subsequently, minimum and maximum elevation values were calculated for each 231 
PCA polygon using the ‘Zonal Statistics’ tool in QGIS. The difference between these values 232 
was used to quantify topographic relief (in meters) of each PCA. 233 
 234 
To investigate potential drivers of species diversity across PCAs, we fitted generalized linear 235 
models with a negative binomial error distribution to account for overdispersion (dispersion 236 
parameter < 1, compared to >5 in the Poisson models) and improve model fit (AIC > 1000 237 
for Poisson, but < 1000 for negative binomial models). The response variable was the total 238 
number of species recorded per PCA. Fixed predictors included total area (km²), occurrence 239 
density (number of occurrence records per km²), and topographic relief (m). Total area and 240 
topographic relief served as proxies for landscape features, based on hypotheses that larger 241 
areas and those spanning broader elevational gradients —by virtue of having heterogenous 242 
habitat—support higher biodiversity (Ricklefs & Lovette, 1999: Gotelli, 2008). Occurrence 243 
density was used as a proxy for sampling effort, since species diversity per grid cell 244 
increased with occurrence points. Predictor variables were transformed based on their 245 
distribution to improve model fit: area and occurrence density were log₁₀-transformed due to 246 
strong right skew, and topographic relief was square-root-transformed due to moderate right 247 
skew. All predictors were then mean-centered and scaled to facilitate model convergence and 248 
interpretation of coefficients.  249 
 250 
Because PCAs differ in their underlying species pools due to historical biogeographic 251 
structuring or other evolutionary processes, we initially included the Pleistocene Aggregate 252 
Island Complex (PAIC; see Brown et al., 2013) as a random effect for potential non-253 
independence in species diversity. However, PAIC explained less than 1% of the variance 254 
and did not improve model performance, so it was excluded from the final model. We then 255 
fitted a fully factorial model with negative binomial error and performed stepwise model 256 
selection based on Akaike Information Criterion (AIC), using the stepAIC function in the R 257 
package MASS (Venables & Ripley, 2002; Table S1–S2). Residual diagnostics using 258 
DHARMa indicated quantile deviations for the occurrence density predictor, likely 259 
attributable to an excess of zero values reflecting undersampling, rather than model 260 
misspecification. Tests of overdispersion and residual uniformity did not indicate violations 261 
of model assumptions. 262 
 263 
In addition to modeling species diversity, total occurrence records per PCA were modeled as 264 
a function of total area, topographic relief, and PAIC as fixed predictors, using a negative 265 
binomial error distribution. A two-way interaction between total area and topographic relief 266 
improved model fit and was retained in the final model, as supported by model selection 267 
based on AIC (Table S3–S4). DHARMa diagnostics indicated no major violations of model 268 
assumptions, although quantile deviations were observed for the total area predictor. These 269 
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deviations likely reflect an exponential increase in predicted values and a widening spread of 270 
residuals at higher area values, where fewer PCAs occur and variability is greater (Figure 271 
S3). This sampling effort model aimed to determine whether species-poor areas are 272 
genuinely less diverse or simply poorly sampled. 273 
 274 
Generalized linear models were fitted using the glmmTMB package (Brooks et al., 2017). 275 
Overdispersion was initially assessed using a custom R function that calculates the ratio of 276 
the sum of squared Pearson residuals to residual degrees of freedom, with values >1.5 277 
considered indicative of overdispersion requiring correction (Zuur et al., 2009). Model 278 
diagnostics for final models were conducted using the DHARMa package (Hartig, 2024). 279 
Simulated residuals were generated with the simulateResiduals function (plot = TRUE), and 280 
goodness-of-fit tests on scaled residuals were done using testZeroInflation, testUniformity, 281 
and testDispersion functions. Residuals were also plotted against each fixed predictor using 282 
plotResiduals to check for non-random patterns. Variance inflation factors (VIFs) for all 283 
predictors, calculated using the R package performance (Lüdecke et al., 2021), were 284 
generally within acceptable limits (all VIFs < 5). However, moderate collinearity was 285 
observed in KBA species diversity model for the interaction between occurrence density and 286 
area (VIF = 6.42), as well as for topographic relief (VIF = 5.34). All diagnostic outputs and 287 
residual plots are provided in Figures S1–S4. 288 
 289 
As a complement to model-based inference, bivariate relationships between the response 290 
variable and continuous predictors were visually examined. These relationships were plotted 291 
using locally estimated scatterplot smoothing (LOESS) with 95% confidence intervals, 292 
implemented via the ggplot2 package. Predictor variables were transformed to match model 293 
specifications, and point colors were used to reflect the values of interacting variables with 294 
significant effects, unless otherwise stated, aiding interpretation of interaction patterns. For 295 
descriptive purposes, Pearson correlation coefficients were calculated for each plot, with 296 
significance assessed at α = 0.05 using the cor.test function. All statistical analyses were 297 
conducted in R version 4.3.1 (R Core Team, 2023) and documented in the attached 298 
Supplementary Material.  299 
 300 
 301 
RESULTS 302 
 303 
Spatial distribution of herpetofaunal diversity in the Philippines 304 
 305 
Spatial distribution of observed herpetofaunal diversity in the Philippines is non-uniform and 306 
fragmented, with unequal national-scale coverage that varies considerably across islands 307 
(Figure 1A). The distribution of species richness classes significantly deviated from a 308 
uniform expectation (χ²(8) = 15,843, p < 0.001), indicating uneven observed species richness 309 
across the archipelago. Some richness classes were overrepresented, while others were 310 
underrepresented relative to expectations if all classes were equally likely. Nationally, only 311 
~2% (n = 87) of the 10-km² grids have more than 41 observed species—roughly 50% of 312 
maximum richness recorded in any grid—while 31% (n = 1,370) have between 1 and 40 313 
species, and 66.7% (n = 2,914) have zero recorded species.  314 
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Figure 1. Spatial distribution of observed amphibian and squamate reptile diversity for (A) 355 
all data types; (B) preserved-specimen records; (C) citizen-science records; and (D) material-356 
citation records. Species richness is calculated per 10-km² grid cell across the Philippines. 357 
Inset bar graph shows frequency distribution of grid cells across species richness classes for 358 
each dataset. Dashed red line indicates expected frequency for each class under a uniform 359 
distribution, as used in chi-square goodness-of-fit tests. 360 
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Different data sources provide complementary insights into herpetofaunal diversity. The 361 
majority of occurrence records came from preserved specimens (n = 70,112), followed by 362 
citizen science contributions (n = 3,735) and material citations (n = 2,344), while 37 points 363 
were unclassified. Both preserved-specimen and citizen-science data represent individual 364 
occurrences, while material citations typically reflect species-level records, as published 365 
species inventory studies usually report presence by species rather than by individuals. All 366 
three data types significantly deviated from a uniform expectation (χ²(8) = 20,186–30,610, p 367 
< 0.001). Because preserved specimens account for 92% of all records, spatial richness 368 
patterns largely mirror those derived from the combined dataset (Figure 1B). Citizen science 369 
data generally contribute 1–10 species per grid, with a few grids reaching up to 30 species, 370 
and tend to complement regions already covered by specimen-based surveys (Figure 1C). 371 
Material citation data are concentrated in fewer areas, consistent with the targeted, site-372 
specific nature of biotic inventories (Figure 1D). 373 
 374 
Priority conservation areas were proportionally well-sampled, although distribution of 375 
herpetofaunal diversity is uneven and concentrated in few areas (Figure 2). Of the 76,228 376 
curated occurrence records, 21,210 (27.8%) fell within CAs and 23,058 (30.2%) within 377 
KBAs—proportions that are disproportionately high relative to the Philippine land area 378 
occupied by these designations (12–15% for CAs and 6.72% for KBAs). Overlaying species 379 
richness with PCA boundaries shows that whereas some high-richness grid cells lie within 380 
PCAs, many large sites include cells with sparse or no records. Notably, 52.7% of 207 CAs 381 
and 20.2% of 109 KBAs contain grid cells with zero species records, and an additional 382 
22.4% of CAs and 29.4% of KBAs contain only up to 10 recorded species. At the same time, 383 
several well-sampled areas with high observed diversity (>40 recorded species) occur outside 384 
established CAs but within forested areas, many of which partially overlap with KBAs 385 
(Figure S5). 386 
 387 
Well-surveyed sites, those with >40 recorded species, make up 8.8% of CAs and 18.3% of 388 
KBAs (Figure 2). Particularly species-rich locations (>60 species) include Samar Island 389 
Natural Park, Pasonanca Natural Park, Mt. Malindang Natural Park, Mt. Makiling Forest 390 
Reserve, and PP1636 (unnamed wildlife sanctuary in southcentral Luzon). These sites have 391 
been extensively surveyed, with data available in public repositories like GBIF, though many 392 
records remain absent from, or not reported in, peer-reviewed literature (but see Nuneza et 393 
al., 2010; Gonzalez et al., 2020). Other well-documented areas combine strong specimen 394 
representation in collections with published data: Cuernos de Negros (Brown & Alcala 1961, 395 
1970), Aurora Memorial National Park (Brown et al., 2000; Siler et al., 2011), Mt. Busa–396 
Kimba (Brown, 2015; Pitogo et al., 2021), Mt. Guiting-Guiting (Siler et al., 2012; Meneses 397 
et al., 2022), Mt. Hilong-hilong (Plaza et al., 2015; Sanguila et al., 2016), Pantabangan-398 
Caranglan Watershed Reservation (Gojo-Cruz et al., 2018), and Victoria-Anepahan Ranges 399 
(Supsup et al., 2020). The 40-species cut-off, however, is used here solely as a reference 400 
point for discussion and should not be interpreted as a true threshold of diversity, since 401 
observed values remain influenced by sampling limitations and potential biases. 402 
 403 
 404 
 405 
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 426 
 427 
Figure 2. Relative locations of well-sampled (≥40 species) conserved areas and key 428 
biodiversity areas across the Philippines. Total area, occurrence point density, and number of 429 
species are included for each area. Base map shows spatial distribution of observed 430 
amphibian and squamate reptile diversity for all data types. Inset histogram shows frequency 431 
distribution of priority conservation areas by species richness and number of occurrence 432 
records. 433 
 434 
 435 
Predictors of species diversity across conservation areas 436 
 437 
Species diversity in PCAs was best explained by models that included total area, 438 
occurrence density, and their interactions with topographic relief, although the 439 
structure of these relationships varied. For CAs, the top-ranked model included total 440 
area, occurrence density, topographic relief, and an interaction between area and 441 
topographic relief (AIC = 875.8; Table S1). Both total area (1.9556 ± 0.1894 SE, z = 442 
10.326, p < 0.01) and occurrence density (1.4503 ± 0.1496 SE, z = 9.696, p < 0.01) 443 
were strong positive predictors of species diversity (Table 1). 444 
 445 
Results from model-based inference aligned with patterns observed in scatterplots, which 446 
showed moderate positive correlations between species diversity and total area (Pearson’s r = 447 
0.51, p < 0.05; Figure 3A), and a steep but variable trend for occurrence density (r = 0.53, p 448 
< 0.05), particularly at higher values (Figure 3B). A slightly weaker positive correlation was 449 
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found between species diversity and topographic relief, with an initial increase that flattened 450 
at broader elevational ranges (r = 0.41, p < 0.05; Figure 3C). 451 
 452 
Table 1. Coefficient estimates from generalized linear models (negative binomial) relating 453 
species diversity to total area, occurrence density, and topographic relief for priority 454 
conservation areas in the Philippines. Total area and occurrence density were log-455 
transformed, and topographic relief was square-root-transformed; all predictors were scaled 456 
and mean-centered. Significance assessed at α = 0.05(*).  457 
 458 
Predictors Estimate ± SE z-value p-value 
Conserved Areas    
Intercept 0.6405 ± 0.1423 4.502 <0.01* 
Total Area  1.9556 ± 0.1894 10.326 <0.01* 
Occurrence Density 1.4503 ± 0.1496 9.696 <0.01* 
Topographic Relief 0.0021 ± 0.1645 0.013 0.989  
Area * Topographic Relief -0.2322 ± 0.1430 -1.624 0.104 
Key Biodiversity Areas    
Intercept 2.8210 ± 0.1279 22.049 <0.01* 
Total Area  0.8974 ± 0.1553 5.780 <0.01* 
Occurrence Density 1.3127 ± 0.1868 7.027 <0.01* 
Topographic relief  0.2019 ± 0.1435 1.407 0.1593 
Area * Occurrence Density 0.5501 ± 0.2188 2.514 0.0119* 
Area * Topographic Relief -0.4243 ± 0.1439 -2.948 0.0032* 
Occurrence Density * Topographic Relief -0.5392 ± 0.2362 -2.283 0.0225* 

 459 
 460 
For KBAs, the best-supported model additionally included interactions between topographic 461 
relief and both total area and occurrence density (AIC = 779.2; Table S2). Occurrence 462 
density (1.3127 ± 0.1868 SE, z = 7.027, p < 0.01) was a stronger predictor than total area 463 
(0.8974 ± 0.1553 SE, z = 5.780, p < 0.01), and their interaction was positive (0.5501 ± 0.2188 464 
SE, z = 2.514, p = 0.0119) (Table 1). Topographic relief had no significant main effect on 465 
species diversity, but its interactions with total area (–0.4243 ± 0.1439 SE, z = –2.948, p = 466 
0.0032) and occurrence density (–0.5392 ± 0.2362 SE, z = –2.283, p = 0.0225) were both 467 
significant and negative. These results suggest that topographic relief may modulate 468 
influence of area and sampling effort on observed species diversity in KBAs.  469 
 470 
Similar patterns emerged in the scatterplots: species diversity generally increased with total 471 
area, though the relationship flattened at intermediate values before rising again (r = 0.31, p 472 
< 0.05; Figure 3D). A steep initial increase was also observed with occurrence density, 473 
followed by greater variability at higher densities (r = 0.46, p < 0.05; Figure 3E). The 474 
association between topographic relief and species diversity was also weak but positive (r = 475 
0.30, p < 0.05; Figure 3F), resembling the pattern observed in CAs. 476 
 477 
 478 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2025. ; https://doi.org/10.1101/2025.09.13.676052doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.13.676052
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 479 
 480 
 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

Figure 3. Scatterplots showing species diversity in relation to total area, occurrence density, 492 
and topographic relief for conserved areas (top panels) and key biodiversity areas (bottom 493 
panels). Dashed line represents LOESS-smoothed trend, with grey shaded area indicating 494 
95% confidence interval. Each point represents a priority conservation area; colors denote 495 
interacting variables with significant effects or inclusion in the best-fit generalized linear 496 
models. No interactions were significant in the top panels, although area × topographic relief 497 
interaction was retained in the best model. Y-axis is fixed at a lower limit of 0 for better 498 
visualization. Pearson correlation coefficients (r) and p-values are shown; significance is 499 
based on α = 0.05. 500 
 501 
Predictors of sampling effort across conservation areas 502 
 503 
Sampling effort in PCAs was best explained by models that included total area, topographic 504 
relief, their interaction, and biogeographic subregion (PAIC) as a categorical predictor (AIC 505 
= 1348.4 for CAs; AIC = 1172.9 for KBAs; Tables S3–S4). In CAs, both total area (1.1765 ± 506 
0.3709 SE, z = 3.172, p = 0.0015) and topographic relief (1.2525 ± 0.3938 SE, z = 3.181, p = 507 
0.0015) were strong positive predictors of sampling effort (Table 2). However, their 508 
interaction had a significant negative effect (–0.6413 ± 0.2683 SE, z = –2.390, p = 0.0168), 509 
suggesting that the combined influence of total area and topographic relief on sampling 510 
density may diminish at high values. Sampling effort was highest in Luzon, the reference 511 
level, among all PAICs. No other PAIC differed significantly from Luzon, except West 512 
Visayas, which exhibited comparably higher sampling effort (3.3097 ± 0.8625 SE, z = 3.827, 513 
p < 0.01). 514 
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 515 
In KBAs, the same model structure identified a strong positive effect of the intercept (Luzon) 516 
and weak individual effects of total area and topographic relief (Table 2). Although total area 517 
(0.3027 ± 0.2802 SE, z = 1.080, p = 0.2801) and topographic relief (0.4453 ± 0.2790 SE, z = 518 
1.596, p = 0.1105) were not individually significant, the interaction term showed a 519 
marginally significant negative effect (–0.3679 ± 0.1937 SE, z = –1.899, p = 0.0576). Luzon, 520 
the reference level, had the highest sampling effort among PAICs. Only the Sulu Island 521 
Group had significantly lower sampling effort compared to Luzon (–4.7948 ± 1.5603 SE, z = 522 
–3.073, p = 0.0021), possibly reflecting logistical challenges or reduced field access in this 523 
region. 524 
 525 
 526 
Table 2. Coefficient estimates from generalized linear models (negative binomial) relating 527 
number of occurrence records to total area and topographic relief for priority conservation 528 
areas in the Philippines. Total area was log-transformed and topographic relief was square-529 
root-transformed; continuous predictors were scaled and mean-centered. Significance 530 
assessed at α = 0.05(*). PAIC = Pleistocene Aggregate Island Complexes. Reference level 531 
for PAIC is Luzon. 532 
 533 
Predictors Estimate ± SE z-value p-value 
Conserved Areas    
Intercept 3.3381 ± 0.3142 10.62 < 0.01 * 
Total Area  1.1765 ± 0.3709 3.172 0.0015 * 
Topographic Relief 1.2525 ± 0.3938 3.181 0.0015 * 
PAIC: Mindanao 0.1343 ± 0.4606 0.292 0.7706 
PAIC: Mindoro 0.5381 ± 1.5006 0.359 0.72 
PAIC: Palawan 0.4310 ± 1.0143 0.425 0.6709 
PAIC: Romblon Island Group 1.9644 ± 1.9589 1.003 0.3160 
PAIC: Sulu Island Group 0.4890 ± 2.8422 0.172 0.8634 
PAIC: West Visayas 3.3097 ± 0.8625 3.837 0.0001 * 
Area * Topographic Relief -0.6413 ± 0.2683 -2.390 0.017 * 
Key Biodiversity Areas    
Intercept 4.9874 ± 0.3419 14.59 < 0.01 * 
Total Area  0.3027 ± 0.2802 1.080 0.28 
Topographic Relief 0.4453 ± 0.2790 1.596 0.1105 
PAIC: Mindanao  0.3802 ± 0.4864 0.782 0.4345 
PAIC: Mindoro -0.7675 ± 0.7252 -1.058 0.29 
PAIC: Palawan 0.4971 ± 0.8467 0.587 0.5571 
PAIC: Romblon Island Group 0.5533 ± 1.1229 0.493 0.6222 
PAIC: Sulu Island Group -4.7948 ± 1.5603 -3.073 0.0021 * 
PAIC: West Visayas 1.1147 ± 0.5995 1.859 0.0630  
Area * Topographic Relief -0.3679 ± 0.1937 -1.899 0.0576 

 534 
 535 
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These model-based findings were broadly consistent with scatterplot analyses. Among CAs, 536 
weak positive correlations were observed between sampling effort and both total area (r = 537 
0.32, p < 0.05; Figure 4A) and topographic relief (r = 0.27, p < 0.05; Figure 4B). For KBAs, 538 
correlations were weaker (r = 0.24 for total area, Figure 4C; and r = 0.19 for topographic 539 
relief, Figure 4D; both p < 0.05), likely reflecting influence of zero values or sampling gaps 540 
across several sites. 541 
 542 
 543 
 544 
 545 
 546 
 547 
 548 
 549 
 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

Figure 4. Scatterplots showing number of occurrence points in relation to total area 563 
and topographic relief for conserved areas (top panels) and key biodiversity areas 564 
(bottom panels). Dashed line represents LOESS-smoothed trend, with grey shaded area 565 
indicating 95% confidence interval. Each point represents a priority conservation area; 566 
colors indicate interacting variables with significant effects. Y-axis is fixed at a lower 567 
limit of 0 for better visualization. Pearson correlation coefficients (r) and p-values are 568 
shown; significance at α = 0.05. 569 
 570 
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DISCUSSION 571 
 572 
Uneven spatial diversity pattern reflects sampling biases 573 
 574 
Sustained biodiversity documentation across the Philippines has enabled spatial mapping of 575 
observed species diversity of amphibians and squamate reptiles, revealing stark patterns of 576 
sampling biases. More than two-thirds of grid cells contain either zero or only 1–10 577 
documented species, while comparatively fewer cells (~2%) exhibit higher species diversity 578 
levels. This pronounced disparity reflects persistent spatial biases in biodiversity knowledge. 579 
Observed species diversity patterns likely indicate where sampling has been more intensive, 580 
rather than accurately representing underlying ecological or biogeographic factors—a pattern 581 
that is persistent across many biodiversity-rich areas globally (Azovsky, 2011; Engemann et 582 
al., 2015; Grattarola et al., 2020; Hughes et al., 2024). Addressing these biases is critical not 583 
only for improving knowledge of Philippine biodiversity but also for ensuring that 584 
conservation policy, priority-setting, and management decisions rest on a more complete and 585 
representative knowledge base. 586 
 587 
A recent comprehensive review of Philippine herpetology revealed substantial geographic 588 
gaps in field sampling across the archipelago (see Meneses et al., 2024 for a detailed 589 
discussion). Our findings broadly align with these observations but offer additional fine-scale 590 
information by integrating curated species point data and grid-based species richness 591 
estimates. This approach not only identifies where sampling has occurred but also quantifies 592 
its intensity, demonstrating that higher diversity values are associated with well-sampled 593 
sites. Notably, we found that a disproportionate share of documented herpetological diversity 594 
is concentrated in a few intensively surveyed areas—mostly in Luzon, the largest island, and 595 
in West Visayas, comprising most central islands—where collection efforts in recent decades 596 
have been more intense (Brown et al., 2001, 2012; Meneses et al., 2024). High-resolution 597 
data of this kind are critical for accurately representing spatial patterns of sampling effort, 598 
thereby guiding resources and research efforts towards poorly explored regions. Furthermore, 599 
by incorporating species point data from different sources, we recovered diversity data in 600 
areas that would otherwise appear as knowledge gaps, such as the Sulu Archipelago in the 601 
south (Meneses et al., 2024); although sampling effort is still disproportionately lower in this 602 
region. As such, given that biodiversity data in the Philippines are fragmented, reliance on 603 
selective or incomplete datasets for any synthesis studies can introduce substantial bias 604 
(Pitogo et al., 2025). 605 
 606 
Priority conservation areas (PCAs) are relatively well-sampled in proportion to their total 607 
area, yet herpetofaunal knowledge across them remains limited and uneven. Despite these 608 
gains, many PCAs still lack species records altogether or may have data that are not 609 
accessible in digital form. Where species data are lacking in PCAs, they are however 610 
available outside delineated boundaries, which may suggest persistent issues associated with 611 
sampling within PCAs, including permitting and other bureaucratic processes (particularly 612 
for legislated protected areas), logistical access, and security constraints (Sanguila et al., 613 
2016; Brown et al., 2020; Meneses et al., 2024; see Figure 5). Although well-surveyed sites 614 
include some of the country’s known PCAs, vast portions of other mountain ranges and 615 
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many smaller islands remain poorly sampled or lack species data that are readily accessible 616 
for broader scientific and conservation use. Expanding targeted field-based surveys beyond 617 
established PCAs—and ensuring that resulting data are made publicly and digitally available 618 
for mobilization—remains urgently needed to support conservation initiatives grounded in 619 
accurate, comprehensive biodiversity knowledge (Di Minin & Toivonen 2015; Grattarola et 620 
al., 2020). 621 
 622 
Sampling biases skew knowledge toward large conservation areas 623 
 624 
Documenting biodiversity is critical in areas where such information can directly inform 625 
protection and management decisions. Conserved areas remain central to efforts aimed at 626 
safeguarding biodiversity across genetic, species, and ecosystem levels (Watson, 2014; Jonas 627 
et al., 2021). Complementing these, KBAs, though lacking formal protection or management, 628 
are identified as priority sites for future conservation efforts (Eken et al., 2004). Thus, 629 
biodiversity data support monitoring and adaptive management within CAs and guiding 630 
prioritization and investment in KBAs. However, digitally accessible records for Philippine 631 
herpetofauna show strong uneven documentation: some sites are well-surveyed, others 632 
poorly sampled, and many contain no (digitally accessible) records. These disparities mask 633 
true biodiversity patterns and pose significant challenges for efficient, evidence-based 634 
conservation planning (Hoffman, 2022). 635 
 636 
Observed species diversity and sampling effort for herpetofauna were generally higher in 637 
larger PCAs. However, this relationship weakens with increasing topographic relief. Our 638 
results suggest that although larger areas tend to receive more sampling effort (and have 639 
higher observed diversity), this effect weakens in high mountainous areas. The significant 640 
negative interaction between topographic relief and total area on observed diversity contrasts 641 
with hypothesis that topographic complexity, by virtue of hosting diverse habitat types, 642 
should support higher species diversity (Ricklefs & Lovette, 1999; Gotelli, 2008; Engemann 643 
et al., 2015; Tenorio et al., 2023), an inconsistency that likely reflects sampling limitations. 644 
Mountainous areas in the Philippines, despite their potential for high species richness, are 645 
often poorly sampled likely due to logistical constraints, along with other factors (Pitogo & 646 
Saavedra 2023; see Figure 5). This hypothesis is especially supported by our results, which 647 
recovered significant negative interaction effects between topographic relief and sampling 648 
effort. These challenges systematically bias biodiversity knowledge away from 649 
topographically complex areas, which are some of the most ecologically critical and 650 
conservation-relevant regions in the country (Heaney, 2004; Brown et al., 2013). 651 
 652 
Data limitations are not confined to large mountain ranges. Smaller conservation areas, 653 
particularly those in island environments, also suffer from substantial biodiversity knowledge 654 
gaps (also see Fidelino et al., 2025). Although this pattern was not statistically prominent in 655 
our model-based inference, it was evident in our exploratory data analyses and visualizations 656 
(e.g., small-sized, low-topographic-relief PCAs in Figures 3–4). Many small island 657 
conservation areas in the Philippines remain poorly sampled despite yielding newly 658 
discovered species and harboring unique, range-restricted taxa (McGuire & Alcala, 2000; 659 
Allen et al., 2004; Heaney et al., 2006; Brown et al., 2011; Oliveros et al., 2011; Siler et al., 660 
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2012; Reyes et al., 2017; Barley et al., 2020; Clores et al., 2021; Supsup et al., 2021). These 661 
systems face disproportionate threats from climate-driven sea-level rise, extreme weather 662 
events, invasive species, and habitat loss (Russell & Kueffer, 2019), yet lack the baseline 663 
biodiversity data for adaptive management. Targeted surveys are urgently needed in these 664 
areas to document species presence and build taxonomic and ecological knowledge base 665 
required for effective conservation in islands (Borges et al., 2016). Without action, island 666 
ecosystems risk becoming critical blind spots in the country’s conservation efforts. 667 
 668 
Data gaps and biases persist, but diverse sources can address them 669 
 670 
The majority of digitally accessible knowledge on Philippine herpetofauna comes from 671 
natural history collections. These collections represent over a century of fieldwork that has 672 
shaped taxonomic and systematics knowledge, increasing herpetofaunal diversity estimates 673 
in the country (Brown et al., 2001; Meneses et al., 2024). As such, specimen-associated data 674 
serve as a vital resource for improving knowledge on biodiversity patterns (Ball et al., 2025; 675 
Blades et al., 2025). They also support large-scale ecological studies, which depend on 676 
spatially referenced records to examine broad biodiversity trends and guide conservation 677 
planning (Jetz et al., 2012; Heberling et al., 2021; Orr et al., 2022). Although many regions 678 
remain underrepresented in biodiversity data, it is noteworthy that areas with limited 679 
contemporary surveys—as mentioned earlier, Sulu Archipelago, where fieldwork has been 680 
limited (Meneses et al., 2024)—still hold valuable records preserved through historical 681 
collections. 682 
 683 
In areas where specimens are lacking, citizen science provides a valuable complementary 684 
data stream to help address distributional biases. Online biodiversity platforms (Amano et al., 685 
2016; Della Rocha et al., 2024; Mason et al., 2025) and social media (Barve, 2014; 686 
Chowdhurry et al., 2023; Tabeta & Bejar, 2025) have become particularly useful where 687 
museum records are absent or limited. Although still emerging in Philippine herpetology (but 688 
see Madera, 2019; Acuña et al., 2021), citizen-science contributions are already well 689 
established in other taxonomic groups. For example, active birding communities regularly 690 
contribute to platforms like eBird (Sullivan et al., 2014) and collaborate with researchers and 691 
biodiversity managers to inform site-level conservation efforts in the Philippines (e.g., Pitogo 692 
et al., 2024). Another notable initiative is Co’s Digital Flora of the Philippines (Barcelona et 693 
al., 2013), where citizen scientists and taxonomists work together to maintain a real-time 694 
overview of Philippine flora. At least 54% of the country’s vascular plant species have been 695 
photo-documented, many with associated geographic coordinates (Pelser et al., 2011 696 
onwards). These examples show that citizen-science contributions to observed diversity may 697 
be more pronounced in taxonomic groups with active, organized communities driving such 698 
efforts. Despite challenges related to data quality and metadata completeness, carefully 699 
curated citizen-science records can enhance biodiversity knowledge, particularly in remote or 700 
poorly sampled regions (Amano et al., 2016; Pernat et al., 2024). 701 
 702 
Another important yet often overlooked source of biodiversity data comes from formal 703 
surveys that do not involve specimen collection and eventual deposition in natural history 704 
museums (e.g., Binaday et al., 2017; Gojo-Cruz et al., 2018; Pitogo et al., 2021; Maglangit et 705 
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al., 2022; Decena et al., 2023). And if there are such records, they are often not digitized and 706 
published in publicly accessible domains, especially when deposited in university-based 707 
museums. Many in-country scientists conduct fieldwork that reports valuable records 708 
published in peer-reviewed journals, yet these data are rarely archived in open-access 709 
databases such as GBIF (Beck et al., 2013). Such studies frequently document species in 710 
poorly sampled areas in the Philippines, providing crucial complementary information 711 
(Meneses et al., 2024). Although valuable for expanding species distribution knowledge, 712 
many of these studies do not provide specific geographic coordinates of areas sampled, 713 
which are limited in their use for geospatial research; thus, submission of spatial occurrences 714 
to online databases like GBIF is highly encouraged (Hochkirch et al., 2021). In addition, a 715 
wealth of biodiversity data remains locked in grey literature—government reports, university 716 
theses, and project documents—that are not digitally accessible but are often used in site-717 
level management. Incorporating these sources into public repositories and ensuring they are 718 
properly curated would improve national biodiversity coverage (Cadotte et al., 2025). 719 
 720 
Disparate biodiversity data types underscores the need for standardized archiving practices 721 
(Wieczorek et al., 2012; Ball-Damerow et al., 2019; Marques et al., 2024) and greater 722 
adherence to best-practice guidelines in dealing with big data (Costello et al., 2014; Hughes 723 
et al., 2024). Although these varied data streams help fill distributional gaps, they often differ 724 
in quality, accessibility, and curation. These differences are especially true for non-specimen-725 
based data, which typically lack the standardized metadata associated with museum 726 
specimens. To maximize their scientific utility, we recommend that non-specimen-based 727 
records be accompanied by metadata, including GPS coordinates (including uncertainty), 728 
observation date and time, natural history notes, among others. Robust metadata not only 729 
enhances credibility and utility of individual records but also facilitates their integration into 730 
broader ecological, biogeographic, and conservation research (Jetz et al., 2012).  731 
 732 
Scaling biodiversity documentation to meet conservation targets 733 
 734 
The Kunming-Montreal Global Biodiversity Framework, adopted in 2022, sets an ambitious 735 
goal: to protect 30% of the world’s terrestrial and marine ecosystems by 2030, building on 736 
the earlier Aichi Target 11 (Robinson et al., 2024). Achieving this target requires more than 737 
simply expanding protected area coverage; it also demands effective management that 738 
delivers measurable benefits for biodiversity (CBD, 2022). These outcomes depend on 739 
robust, accurate biodiversity data, particularly within PCAs (Mallari et al., 2013; Buckland & 740 
Johnston, 2017; Wenk et al., 2024). However, our results show that persistent data gaps and 741 
biases, especially in large mountainous and island conservation areas, continue to shape 742 
observed biodiversity data patterns. Although many PCAs with apparent data gaps may in 743 
fact hold biodiversity data, their lack of digital accessibility limits inclusion in national-scale 744 
assessments of sampling effort. This limitation hinders resource allocation for improved 745 
documentation, reduces opportunities for external vetting and expert curation of data, and 746 
impedes integration into broader datasets that inform national conservation planning (Ball-747 
Damerow et al., 2019; Grattarola et al., 2020; Orr et al., 2022). 748 
 749 
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Addressing the challenge of insufficient biodiversity documentation requires developing and 750 
implementing enabling mechanisms to overcome constraints in site-level primary data 751 
collection, which comprises the majority—if not all—of available biodiversity data (Figure 752 
5). This includes prioritizing biodiversity documentation within national conservation 753 
policies and planning frameworks (e.g., Philippine Biodiversity Strategy and Action Plan, 754 
PBSAP 2024–2040) to strengthen institutional support for field-based activities, especially 755 
within PCAs (Soberón, 2022). For example, streamlining research permitting processes, fully 756 
aligned with Indigenous Peoples’ rights and national access and benefit-sharing policies, can 757 
reduce bureaucratic barriers to ethical and standardized data collection (Britz et al., 2020; 758 
Horckirch et al., 2021). Engaging Indigenous Peoples and local communities as 759 
collaborators, and supporting culturally appropriate awareness and communication 760 
initiatives, can further foster equitable partnerships and mutual knowledge exchange 761 
(Dawson et al., 2024). Financial mechanisms within PAs, such as the Integrated Protected 762 
Area Fund, can be leveraged to support student-led and locally collaborative field research. 763 
Local or subnational government policies and support mechanisms are also critical for 764 
ensuring logistical coordination, safe access, and community involvement in fieldwork.  765 
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 790 
Figure 5. Constraints in field-based biodiversity data collection and corresponding enabling 791 
mechanisms to improve primary biodiversity data coverage. Each mechanism primarily 792 
addresses one or more constraint types (italicized text). 793 
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Beyond site-level interventions, targeted national funding for species discovery and 795 
taxonomic capacity-building can incentivize early-career researchers to pursue field-based 796 
work (Britz et al., 2020; Abrahamse et al., 2021). These efforts should be complemented by 797 
investments in biodiversity science within university curricula (Soberón & Peterson, 2004), 798 
ensuring students are trained in both theory and practice. Addressing the limited data 799 
management capacity among local researchers is also critical for promoting effective data-800 
sharing, enhancing the verifiability and utility of biodiversity studies. Comprehensive 801 
training programs and standardized data systems can help overcome this barrier, ensuring the 802 
production of high-quality, accessible datasets. At the same time, the increasing diversity of 803 
data contributors underscores the need for a streamlined and curated national biodiversity 804 
data infrastructure (Güntsch et al., 2025). Such a platform should ensure that biodiversity 805 
data, especially those generated from PCAs, are digitally and publicly accessible, enabling 806 
diverse stakeholders to collectively contribute to and benefit from biodiversity knowledge. 807 
Ultimately, these in-country initiatives must be paired with stronger domestic and 808 
international institutional mechanisms, such as equitable collaboration standards and data-809 
sharing agreements, to ensure that non-monetary benefits from biological resource use are 810 
meaningfully shared with local collaborators and inform national policy and conservation 811 
planning (Collela et al., 2023). 812 
 813 
Finally, scaling biodiversity documentation beyond existing PCAs can guide the 814 
identification of new priority sites for protected area establishment. Our findings show that 815 
several well-sampled, high-diversity areas remain outside current PCAs, many overlapping 816 
with only partially protected KBAs, underscoring opportunities to align future CA expansion 817 
with empirically documented biodiversity patterns. The updated national biodiversity 818 
strategy and action plan (PBSAP 2024–2040) targets protecting 24% of terrestrial areas 819 
through CAs (DENR-BMB, 2025), yet only ~15% are currently protected. Prioritizing well-820 
sampled, high-diversity areas for protection will be critical to achieving this goal. Our 821 
results, however, only focus on herpetofauna and similar data gaps and biases likely affect 822 
many taxonomic groups in the Philippines (Berba & Matias, 2022; Pitogo, 2025), reinforcing 823 
the need for broader, inclusive biodiversity documentation. Building a robust and 824 
representative biodiversity knowledge base—well-curated and aligned with FAIR (findable, 825 
accessible, interoperable, reusable) and CARE (collective benefit, authority to control, 826 
responsibility, ethics) principles—will require sustained collaboration among scientists, 827 
conservation practitioners, and institutions, and critically, with Indigenous Peoples and local 828 
communities (Jetz et al., 2012; Schmeller et al., 2017; Carroll et al., 2021). Strengthening 829 
such collective and inclusive efforts is essential for transforming biodiversity knowledge into 830 
tangible conservation outcomes and ensuring the Philippines meets its national and global 831 
biodiversity commitments. 832 
 833 
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Table S1. Stepwise model selection using AIC for species richness as a function of area, 1416 
occurrence density, and topographic relief (species diversity model for conserved areas). The 1417 
starting model included all main effects and their three-way interaction. The final model 1418 
retained only two main effects and one two-way interaction. 1419 
 1420 

Step Model Terms Action Df AIC 
0 log_Area × log_Occurrence × 

sqrt_Topo_Relief 
Start model — 877.56 

1 log_Area + log_Occurrence + 
sqrt_Topo_Relief + 

log_Area:log_Occurrence + 
log_Area:sqrt_Topo_Relief + 

log_Occurrence:sqrt_Topo_Relief 

Dropped 3-way 
interaction 

1 876.73 

2 Same as above but without 
log_Occurrence:sqrt_Topo_Relief 

Dropped 2-way 
interaction: 

log_Occurrence × 
sqrt_Topo_Relief 

1 876.49 

3 log_Area + log_Occurrence + 
sqrt_Topo_Relief + 

log_Area:sqrt_Topo_Relief 

Dropped 2-way 
interaction: log_Area × 

log_Occurrence 

1 875.77 

4 Same as above Final model (no change 
improves AIC) 

— 875.77 

 1421 
 1422 
Table S2. Stepwise model selection using AIC for species richness as a function of area, 1423 
occurrence density, and topographic relief (species diversity model for key biodiversity 1424 
areas). The starting model included all main effects and their three-way interaction. The final 1425 
model retained all main effects and two-way interactions, excluding the three-way 1426 
interaction. 1427 
 1428 

Step Model Terms Action Df AIC 
0 log_Area × log_Occurrence × 

sqrt_Topo_Relief 
Start model — 780.98 

1 log_Area + log_Occurrence + 
sqrt_Topo_Relief + 

log_Area:log_Occurrence + 
log_Area:sqrt_Topo_Relief + 

log_Occurrence:sqrt_Topo_Relief 

Dropped 3-way 
interaction 

1 779.22 

2 Same as above Final model (no 
change improves 

AIC) 

— 779.22 

 1429 
 1430 
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Table S3. Stepwise model selection using AIC for occurrence count as a function of area, 1431 
topographic relief, and biogeographic subregion or PAIC (sampling effort model for 1432 
conserved areas). The starting model included a two-way interaction between area and relief, 1433 
and an additive effect of PAIC level. 1434 
 1435 

Step Model Terms Action Df AIC 
0 log_Area × 

sqrt_Topo_Relief + PAIC 
Start model — 1348.35 

1 log_Area + 
sqrt_Topo_Relief + PAIC 

Dropped interaction: log_Area × 
sqrt_Topo_Relief 

1 1351.50 

2 log_Area + 
sqrt_Topo_Relief 

Dropped PAIC 6 1354.20 

 1436 
 1437 
 1438 
 1439 
Table S4. Stepwise model selection using AIC for occurrence count as a function of area, 1440 
topographic relief, and biogeographic subregion or PAIC (sampling effort model for key 1441 
biodiversity areas). The starting model included a two-way interaction between area and 1442 
relief, and an additive effect of PAIC level. 1443 
 1444 

Step Model Terms Action Df AIC 
0 log_Area × sqrt_Topo_Relief + 

PAIC 
Start model — 1172.87 

1 log_Area × sqrt_Topo_Relief Dropped PAIC 6 1173.30 
2 log_Area + sqrt_Topo_Relief + 

PAIC 
Dropped interaction: log_Area 

× sqrt_Topo_Relief 
1 1174.20 
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Figure S1. Model diagnostic results from DHARMa for the best-fit species diversity model 1461 
for conserved areas (Species Diversity ~ log_Area + log_Occurrence + sqrt_Topo_Relief + 1462 
log_Area:sqrt_Topo_Relief). Upper-right panel shows a Q–Q plot used to detect deviations 1463 
from the expected distribution, along with tests for distribution (Kolmogorov–Smirnov), 1464 
dispersion, and outliers. Additional panels show scaled residuals plotted against predicted 1465 
values and each predictor. Simulation outliers, data points falling outside the range of 1466 
simulated values, are highlighted as red stars. Red line indicates statistically significant 1467 
deviations from model expectations. DHARMa zero-inflation test is also included. 1468 
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Figure S2. Model diagnostic results from DHARMa for the best-fit species diversity model 1506 
for key biodiversity areas (Species Diversity ~ log_Area + log_Occurrence + 1507 
sqrt_Topo_Relief + log_Area:log_Occurrence + log_Area:sqrt_Topo_Relief + 1508 
log_Occurrence:sqrt_Topo_Relief). Upper-right panel shows a Q–Q plot used to detect 1509 
deviations from the expected distribution, along with tests for distribution (Kolmogorov–1510 
Smirnov), dispersion, and outliers. Additional panels show scaled residuals plotted against 1511 
predicted values and each predictor. Simulation outliers, data points falling outside the range 1512 
of simulated values, are highlighted as red stars. Red line indicates statistically significant 1513 
deviations from model expectations. DHARMa zero-inflation test is also included. 1514 
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Figure S3. Model diagnostic results from DHARMa for the best-fit sampling effort model 1551 
for conserved areas (No. of Occurrence Records ~ log_Area × sqrt_Topo_Relief + PAIC). 1552 
Upper-right panel shows a Q–Q plot used to detect deviations from the expected distribution, 1553 
along with tests for distribution (Kolmogorov–Smirnov), dispersion, and outliers. Additional 1554 
panels show scaled residuals plotted against predicted values and each predictor. Simulation 1555 
outliers, data points falling outside the range of simulated values, are highlighted as red stars. 1556 
Red line indicates statistically significant deviations from model expectations. DHARMa 1557 
zero-inflation test is also included. 1558 
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Figure S4. Model diagnostic results from DHARMa for the best-fit sampling effort model 1596 
for key biodiversity areas (No. of Occurrence Records ~ log_Area × sqrt_Topo_Relief + 1597 
PAIC). Upper-right panel shows a Q–Q plot used to detect deviations from the expected 1598 
distribution, along with tests for distribution (Kolmogorov–Smirnov), dispersion, and 1599 
outliers. Additional panels show scaled residuals plotted against predicted values and each 1600 
predictor. Simulation outliers, data points falling outside the range of simulated values, are 1601 
highlighted as red stars. Red line indicates statistically significant deviations from model 1602 
expectations. DHARMa zero-inflation test is also included. 1603 
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Figure S5. Map of the Philippines showing (A) overlap between forest cover, priority 1641 
conservation areas (PCAs), and key biodiversity areas (KBAs), and (B) distribution of 1642 
observed amphibian and squamate reptile diversity across all data types outside PCAs and 1643 
KBAs, highlighting that many well-sampled sites with higher observed diversity lie beyond 1644 
established conservation areas. 1645 
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