Machine learning-driven elasticity prediction in advanced inorganic materials via convolutional neural networks
Keywords:
Machine learning, neural networksAbstract
Inorganic crystal materials have broad application potential due to excellent physical and chemical properties, with elastic properties (shear modulus, bulk modulus) crucial for predicting materials' electrical conductivity, thermal conductivity and mechanical properties. Traditional experimental measurement suffers from high cost and low efficiency, while theoretical simulation and graph neural network-based machine learning methods--especially crystal graph convolutional neural networks (CGCNNs)--have become effective alternatives, achieving remarkable results in predicting material elastic properties. This study trained two CGCNN models using shear modulus and bulk modulus data of 10987 materials from the Matbench v0.1 dataset, which exhibit high accuracy (mean absolute error <13, coefficient of determination R-squared close to 1) and good generalization ability. Materials were screened to retain those with band gaps between 0.1-3.0 eV and exclude radioactive element-containing compounds. The final predicted dataset comprises two parts: 54359 crystal structures from the Materials Project database and 26305 crystal structures discovered by Merchant et al. (2023 Nature 624 80). Ultimately, this study completed the prediction of shear modulus and bulk modulus for 80664 inorganic crystals. This work enriches existing material elastic data resources and provides robust support for material design, with all data openly available at this https URL.