
Game Development as Human-LLM Interaction

Jiale Hong∗, Hongqiu Wu∗, Hai Zhao†

Department of Computer Science, Shanghai Jiao Tong University
{hongjiale, wuhongqiu}@sjtu.edu.cn, zhaohai@cs.sjtu.edu.cn

Abstract

Game development is a highly specialized task
that relies on a complex game engine powered
by complex programming languages, prevent-
ing many gaming enthusiasts from handling
it. This paper introduces the Chat Game En-
gine (ChatGE) powered by LLM, which al-
lows everyone to develop a custom game using
natural language through Human-LLM inter-
action. To enable an LLM to function as a
ChatGE, we instruct it to perform the following
processes in each turn: (1) Pscript: configure
the game script segment based on the user’s
input; (2) Pcode: generate the corresponding
code snippet based on the game script segment;
(3) Putter: interact with the user, including
guidance and feedback. We propose a data
synthesis pipeline based on LLM to generate
game script-code pairs and interactions from
a few manually crafted seed data. We pro-
pose a three-stage progressive training strat-
egy to transfer the dialogue-based LLM to our
ChatGE smoothly. We construct a ChatGE for
poker games as a case study and comprehen-
sively evaluate it from two perspectives: inter-
action quality and code correctness.

1 Introduction

A game engine is a software framework primar-
ily designed for the development of games and
generally includes relevant libraries and support
programs (Valencia-García et al., 2016). Game
engines help streamline the game development pro-
cess, enabling developers to focus more on design-
ing gameplay and content. Popular game engines
include Unity, Unreal Engine, CryENGINE, etc.

Game development is a highly specialized task
that relies on game engines powered by complex
programming languages. The learning curve can be
steep for those who wish to develop games based

∗ Equal contribution; † Corresponding author.

Finally, add a flopx phase, where discard one card from
the deck and flop x cards from the deck to the community.

<script>
script['Phase']['flopx'] = 'Discard one card from the deck.
Flop x cards from the deck to the community.'
</script>
<code>
def flopx(self, x):
 self.deck.pop()
 for i in range(x):
 self.community += [self.deck.pop()]
</code>
<utter>
OK. The phase 'flopx' has been added. Any other phases?
</utter>

User ChatGE

Figure 1: An illustration of the ChatGE process for a
poker game. See Appendix C for a complete example.

on their own designs. To make game development
accessible to everyone, we propose the Chat Game
Engine (ChatGE), powered by LLMs (Brown et al.,
2020; Achiam et al., 2023; Touvron et al., 2023).
This engine is designed to support the development
of custom games using natural language through
Human-LLM interaction.

Compared to traditional game engines, our
ChatGE eliminates the learning curve. While tra-
ditional game engines provide users with software
interfaces powered by complex technologies and
programming languages, our ChatGE offers a more
flexible natural language interface powered by
LLM. One can simply input natural language under
the guidance of the engine through Human-LLM
interaction. In ChatGE, a user’s natural language
input is equivalent to calling software interfaces in
a traditional game engine. The LLM generates im-
plementation code based on the user’s input, mirror-
ing the process of implementing software interfaces
through complex technologies and programming
languages in traditional game engines.

ChatGE is based on large language models

ar
X

iv
:2

40
8.

09
38

6v
2

 [
cs

.A
I]

 1
6

D
ec

 2
02

4

(LLMs), which have shown exceptional capabil-
ities in natural language processing across various
aspects. In this work, we explore the joint capa-
bility of interaction and programming of the LLM
to serve as a game engine, enabling development
through natural language via Human-LLM inter-
action. As illustrated in Figure 1, we instruct the
LLM to perform the following processes in each
turn: (1) Pscript: configure the game script seg-
ment based on the user’s input; (2)Pcode: generate
the corresponding code snippet based on the game
script segment; (3) Putter: interact with the user,
including guidance and feedback.

We propose a comprehensive training paradigm
to fine-tune an LLM to excel as a ChatGE, rather
than relying solely on prompting. There are two
main challenges. First, it is an exhausting process
to acquire a large number of game script-code pairs.
We propose an efficient data synthesis pipeline to
generate game script-code pairs automatically from
a few manually crafted seed data. Moreover, our
framework requires the LLM to perform Pscript,
Pcode, and Putter step by step, which challenges
the joint capability of interaction and programming.
Additionally, a straightforward strategy to train
on sufficient complete interaction data is ineffi-
cient. Therefore, we propose a three-stage progres-
sive training strategy to transfer the dialogue-based
LLM to our ChatGE smoothly.

Eventually, we construct a ChatGE for Poker, a
worldwide card game, e.g. Texas hold’em. We uti-
lize the proposed data synthesis pipeline to generate
the corresponding dataset and fine-tune a ChatGE
using the presented strategy. Then we propose
a fine-grained evaluation process, measuring the
performance from two perspectives: interaction
quality and code correctness.

In summary, this paper:

• introduces the ChatGE framework for game
development as Human-LLM interaction;

• presents the data generation technique that
fuels the learning of ChatGE;

• proposes a three-stage progressive training
strategy for effectively training ChatGE;

• constructs a ChatGE for poker games and eval-
uates its performance from two perspectives:
interaction quality and code correctness.

2 Related works

AI for Games AI for games is an exciting area in
AI research. A great amount of recent work stud-
ies learning for agents, e.g. as game players for
Atari (Mnih et al., 2013), Minecraft (Fan et al.,
2022; Wang et al., 2023a), StarCraft, (Vinyals
et al., 2019), NetHack (Küttler et al., 2020; Lowe
et al., 2020), Werewolf (Xu et al., 2023); non-
play characters (NPCs) (Shanahan et al., 2023;
Uludagli and Oguz, 2023); player assistants (Gal-
lotta et al., 2024); game commentators (Eladhari,
2018; Ranella and Eger, 2023). Recently, there
has been work focused on building a neural en-
gine based on LLMs. IDGE (Wu et al., 2024a)
autoregressively predicts in-game states based on
player actions, functioning more like a game run-
time environment that supports game creation by
simple natural language instructions as a script. In
comparison, our ChatGE serves as a development
framework for creating games, similar to a tradi-
tional game engine.

LLMs as Training Data Generators With the
immense power demonstrated by large language
models(LLMs), researchers have recently explored
their potential as as training data generators (Yu
et al., 2024a). Such applications include gener-
ating tabular data (Borisov et al., 2022), medi-
cal dialogue (Chintagunta et al., 2021), sentence
pairs (Schick and Schütze, 2021), role-play dia-
logue (Shao et al., 2023a), instruction data (Peng
et al., 2023; Shao et al., 2023b; Sun et al., 2024;
Wang et al., 2022), etc.. In this paper, we propose
a data synthesis pipeline that leverages LLMs as
training data generators to produce game script-
code pairs and user-LLM interactions from a few
manually crafted seed data.

Progressive Training Strategy Progressive
training strategy is commonly employed in LLM
training. Training on progressively increasing
sequence length data in multi-stages is used to
mitigate computational costs and enhance data
efficiency in both the pre-training (Jin et al., 2023;
Dubey et al., 2024) and post-training (Liu et al.,
2024) phases. Curriculum learning (Bengio et al.,
2009), a specialized form of progressive training,
gradually increases the complexity of data samples
during the training process. Recent studies show
the promising role of curriculum learning in
empowering the language models to tackle more
challenging tasks (Vakil and Amiri, 2023; Wu

User

Interaction
Natural Languague

Instruction and Feedback

③ Interaction
Natural Languague

Guidance and Feedback

CustomGame

② Code snippet

Interpreter

Play

Script

① Script segment

LLM

Figure 2: ChatGE framework. The LLM processes the user’s input in the orange stream, while simultaneously
generating script in the yellow stream, code in the green stream, and interaction in the blue stream.

et al., 2023, 2024a). In this paper, we propose a
three-stage progressive training strategy to transfer
the dialogue-based LLM to our ChatGE smoothly.
This strategy also aligns with the principles of
curriculum learning.

3 ChatGE

In this section, we present our ChatGE framework,
illustrated in Figure 2.

3.1 Overview

The ChatGE framework introduces a new paradigm
of game development as Human-LLM interaction.
In user-LLM interactions, the user provides instruc-
tions for their game concept in natural language
under the guidance of LLM, along with feedback
to the LLM. The LLM guides the user in refin-
ing and clarifying essential details about the game,
while also offering feedback. To enable the LLM to
provide effective guidance, we predefine a generic
script template tailored to a specific type of game.
Except for interaction with the user, the LLM gen-
erates script segments and code snippets to imple-
ment the user’s game concept in each turn. Mean-
while, the code snippets are stored, building toward
the eventual complete game code, CustomGame.
After the game is fully developed through multi-
turn interactions, a code interpreter is used to exe-
cute the CustomGame code for play.

3.2 Formulation

The complete process of ChatGE framework can
be seen as a multi-turn human-LLM interaction.
We first formulate the multi-turn Human-LLM in-
teraction and then extend this concept to ChatGE.

In a multi-turn Human-LLM interaction, both
the user input and the LLM’s output may be related
to the interaction history, such as references to prior

content. The interaction history ht at turn t can be
simply defined as:

ht =

{
∅ if t = 0

{(iτ , oτ) | τ = 1, 2, . . . , t} if t > 0
(1)

where the subscript t refers to the increasing num-
ber of turns, it refers to the user input and ot refers
to the LLM’s output, formulated as:

ot = Fθ(ht−1, it) (2)

where Fθ refers to the LLM, and θ denotes its
parameters. Consequently, an LLM with pa-
rameters θ seeks to maximize the likelihood:∑T

t=1 log pθ(ot|ht−1, it), where T refers to the to-
tal number of interaction turns.

The distinction between ChatGE and a general
multi-turn Human-LLM interaction lies in the spe-
cialization of the input and output. The user input
it consists of instructions about their game con-
cept and feedback to the LLM. The LLM’s out-
put ot includes both interactions with the user and
code snippets to implement the user’s game con-
cept in one turn. To enable an LLM to function
as a ChatGE, we instruct the LLM to perform the
following processes in each turn: (1) Pscript: con-
figure the game script segment based on the user’s
input(Enclosed by <script></script>: in Fig-
ure 1); (2) Pcode: generate the corresponding code
snippet based on the game script segment(Enclosed
by <code></code>: in Figure 1); (3) Putter: in-
teract with the user, including guidance and feed-
back(Enclosed by <utter></utter>: in Figure 1).
For interaction and coding requirements, Pcode and
Putter are essential. Pscript serves as an interme-
diate process, akin to the reasoning in chain-of-
thought (CoT) (Wei et al., 2022). Additionally, it
can also act as a visual representation of the cur-
rent development progress. Compared to code, a

Pool

def flopx(self, x):
 self.deck.pop()
 for i in range(x):
 self.community +=[self.deck.pop()]

Code Snippet
Phase:
 flopx: Discard one card from
 the deck. Flop x cards from
 the deck to the community.

Script Segment

LLM

Generate

Split

LLM

LLM

Generate

Interaction Snippet

Generate

Filter

Sample

def flopx(self, x):
 self.deck.pop()
 for i in range(x):
 self.community += [self.deck.pop()]

 self.deck.pop()

Code Snippet
Phase:
 flopx: Discard one card from the
 deck. Flop x cards from the deck
 to the community. After each one
 flop, discard one more card.

Script Segment

Config:
 Number of players: ...
 ...
Phase:
 start: ...
 ...
Flow: ...

Config:
 Number of players: ...
 ...
Phase:
 start: ...
 ...
Flow: ...

def config(self):
 self.n_players = 3
 ...
def start(self):
 ...
...
def set_flow(self):
 ...

def config(self):
 self.n_players = 3
 ...
def start(self):
 ...
...
def set_flow(self):
 ...

Config:
 Number of players: ...
 ...
Phase:
 start: ...
 ...
Flow: ...

def config(self):
 self.n_players = 3
 ...
def start(self):
 ...
...
def set_flow(self):
 ...

Code

Script

Seed Data

...

...

Complete Interaction

...

...
...

...

...

...

Figure 3: Data synthesis pipeline for game script-code pair and interaction generation.

script is much easier for people to understand, es-
pecially those without a programming background.
Therefore, ot can be specilized as:

ot = (st, ct, ut) = Fθ(st, ct, ut|ht−1, it). (3)

where st, ct, ut refer to the outputs of Pscript, Pcode,
and Putter respectively.Furthermore, the ultimate
objective of this task, CustomGame C can be ob-
tained by merging ct across all turns:

C = Merge(c1, c2, . . . , cT) (4)

where Merge denotes the merge function. Specif-
ically, m can be determined by the specific game
implementation. In our inplementaion, we embed
ct into the base code of the specific game.

4 Data Generation

In this section, we discuss our attempt in data gen-
eration. Utilizing LLMs to create ChatGE requires
fine-tuning on a substantial amount of supervised
data. However, manually crafting diverse interac-
tions with script-code pairs is a challenging task.
Compared to fully manual annotation, harnessing
LLMs to synthesize data is more efficient and has
become a popular method for addressing the issue
of insufficient data. We propose a pipeline consist-
ing of three main steps to synthesize data, starting
with a small set of manually annotated seed data,
as illustrated in Figure 3. We utilize GPT-4o as the
generator.

Init pool First, we manually craft a few script-
code pairs, each corresponding to different custom

games. These pairs serve as seed data and are then
split into script segments and code snippets, which
are added to the pool.

Generate new pairs In this step, we sample pairs
of script segments and code snippets, generating
new pairs based on these selections. We prompt
the generator to modify the code snippet first, then
generate the corresponding script segment. This
order is chosen because it’s easier to map a script
segment to a code snippet by describing the code,
rather than generating code from a script descrip-
tion. This approach yields higher-quality data with
more reliable mappings. To ensure the generated
code functions correctly, we implement a filter to
discard code that fails to execute. This process con-
tinues until the pool contains a sufficient number
of entries.

Generate interaction data Finally, we generate
the interaction data depicted in Figure 1 using the
script-code pairs. This process involves two lines:
(1) generating interaction snippets based on pairs
of script segments and code snippets from the pool;
(2) generating complete interactions from complete
script-code pairs. The necessity of these two data
components will be discussed in the next section.

5 Training Strategy

In this section, we present our training strategy.
In our framework, the LLM will perform Pscript,
Pcode and Putter step by step, which challenges the
joint capability of interaction and programming.
On the other hand, a straightforward strategy to

train on sufficient complete interaction data is in-
efficient. Therefore, we propose a three-stage pro-
gressive training strategy to transfer the dialogue-
based LLM to our ChatGE smoothly.

Stage-1: Base Training This stage aims to train
the base interaction ability of the model. Inter-
action ability is the most fundamental ability for
ChatGE and serves as the foundation for the fol-
lowing two stages. Since most LLMs have already
undergone sufficient and efficient supervised fine-
tuning (SFT) (Brown et al., 2020; Raffel et al.,
2020; Ouyang et al., 2022), we can directly use
such models for Stage-1.

Stage-2: Core Training This stage aims to train
the core capabilities of the model, namely the joint
capability of programming and interaction. It fine-
tunes the model from Stage-1 on interaction snip-
pets that follow the ChatGE format. As illustrated
in Figure 1, we instruct the model to perform the
Pscript, Pcode and Putter step by step to extract the
user’s concept of the game, implement it in code,
and provide guidance and feedback for interaction.

Stage-3: Alignment This stage aims to align
the model with a complete interaction context to
fully develop a game as a ChatGE. It fine-tunes the
model from Stage-2, which already possesses sig-
nificant programming and interaction capabilities.
At this stage, we only need to extend its ability for
multi-turn interactions as a ChatGE, particularly
in guiding users to complete game development
according to the predefined script. Since the model
already possesses strong multi-turn interaction and
long-context capabilities following Stage-1 train-
ing, only a small dataset is required for alignment
at this stage.

6 Experiments

In this section, we construct a ChatGE for a poker
game. We employ the proposed data synthesis
pipeline to generate the corresponding dataset, fine-
tune a ChatGE using the presented strategy and
evaluate its performance.

6.1 Dataset
Poker Game Poker, a worldwide card game, e.g.
Texas hold’em, Badugi. These poker games can
be abstracted into a generic game script. Table 1
presents an example example of such a script for
the classic Texas hold’em. This generic script al-
lows for the configuration of several common el-

Texas hold’em

Config:
Number of players: 3
Min bet: 10
Max bet: 1000
Suit: H, D, C, S
Suit have rank: False
Card value rank: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1
Card combinations rank: High Card, Pair, Two Pair, Three of a Kind,
Straight, Flush, Full House, Four of a Kind, Straight Flush
Phase:
start: Config the game, prepare the deck and chips for all players.
blind: Randomly assign two: small blind bets minimum, big blind double.
dealx: Deal x cards to each player.
switch: Each discards and draws the same number of cards from the deck.
bet: Each bets until all the unfolded match the highest or only 1 remains.
flopx: Discard a card from the deck. Reveal x community cards.
Flow: start, blind, deal2, bet, flop3, bet, flop1, bet, flop1, bet, show, prize

Table 1: An example game script for a poker game.

ements across different poker games, including
the number of players, minimum and maximum
bet limits, suit types and rankings, single-card
rankings, multi-card combination rankings, game
phases, and overall game flow. By adjusting these
elements, virtually infinite variations of poker can
be created. Notably, each game in our dataset cor-
responds to a unique configuration, including cus-
tomizable phases. For example, a standard “flopx”
phase might involve discarding one card from the
deck and then revealing x community cards. This
phase can be customized by adding a rule such as,
“After each flop, discard one more card,” thereby
creating a new variant of the “flopx” phase.

Statistics Training Test
manually crafted(seed data for training)
of games 20 10
of script-code pairs(functions) 180 90

synthesis
of complete interactions 36 /
of interaction snippets 3718 /

Table 2: Statistics of training and test data.

Data Statistics Table 2 shows the statistics of
the training and test data that we construct. The
interaction data format follows Figure 1.

6.2 Setup

We employ LLaMA3.1-8B-Instruct1 (Dubey et al.,
2024) for Stage-1 and finetune it using LoRA (Hu
et al., 2021) with r = 8, α = 32, and a learning
rate of 3e-4. We train 3 epochs on the 3718 inter-
action snippets for Stage-2 and 5 epochs on the 36
complete interactions for Stage-3.

1https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-
Instruct

Evaluation Metrics Scoring Guide
Metric Description Score Criteria

Guidance How the response guide the user step-by-step to complete the game. 1 Poor Significant deficiencies or inaccuracies.
Logic Logical structure and soundness of reasoning, including the support and validity of conclusions. 2 Below Avg. Noticeable weaknesses, lacking in several areas.
Relevance The extent to which the response stays on topic and within the scope of the assistant role. 3 Above Avg. Mostly on target with a few minor shortcomings.
Coherence Integration into the context, consistency with previous statements and conversational flow. 4 Strong Strong performance, often surpasses expectations.
Conciseness Brevity and clarity of the response, avoiding unnecessary elaboration or repetition.

Table 3: Evaluation Metrics and Scoring Guide. We design the criteria following Yu et al. (2024b); Wu et al.
(2024b); Zheng et al. (2024); Wang et al. (2023c); Guo et al. (2023).

To assess the performance of the LLM in a dy-
namic multi-turn interaction environment, we re-
quire a user to interact with the LLM, as demon-
strated in our ChatGE framework. Simulating the
user using a rule-based approach is complex, and
employing human annotators poses challenges re-
lated to inconsistent standards and high costs. To
address these issues, we use GPT-4o-mini as the in-
teractor to simulate the user, a practice increasingly
adopted in dynamic multi-turn interaction environ-
ments (Wang et al., 2023b; Terragni et al., 2023;
Davidson et al., 2023; Sekulić et al., 2024; Luo
et al., 2024; Xiang et al., 2024; Yu et al., 2024b).
For evaluation, we provide the interactor with a
manually crafted game script and instruct them to
treat it as the game concept they have in mind. The
interactor then interacts with the LLM, resulting
in a multi-turn interaction about a specific custom
game. This allows us to use the game script and its
corresponding code as the ground truth for evaluat-
ing the generated interaction.

6.3 Metrics

We assess model performance from two perspec-
tives: interaction quality and code correctness.

Interaction Quality The interaction quality is
assessed by an evaluator model, which assesses
the output for guidance, logic, relevance, coher-
ence and conciseness. Following KIEval (Yu et al.,
2024b), we implement a scoring system to quantita-
tively grade model performance in different aspects.
Responses are rated on a definitive scale from 1 to
4 for each aspect, where 1 and 4 denote ‘Poor’ and
‘Strong’ performance, respectively, as detailed in
Table 3. These scores are designed to encourage
decisive evaluations. To facilitate comparison, we
normalize the scores, ensuring that a rating of 1.0
indicates perfect performance. We utilize GPT-4o
as the evaluator, run 5 times and average the results.

Code correctness We evaluate code correctness
using two functional-level metrics and two overall-
level metrics to respectively measure correctness

of functions as code snippet and complete code:

• F-ESR represents the functional execution suc-
cess rate across the entire test set to measure the
model’s basic coding capability.

• F-Acc represents the functional accuracy of the
code, assessed through black-box testing to de-
termine if the generated code is correct. Specifi-
cally, we replace player input with random input
and, for each run, fix the random seed. We then
compare the resulting game states after multiple
turns until the game ends of the generated code
with the ground truth. We conduct 40 runs, each
with a different random seed, for every entry.
If all runs produce identical states, the code is
considered correct.

• ESR represents the execution success rate of the
complete code of a custom game.

• Acc represents the accuracy of the complete code
of a custom game.

6.4 Main Results
We evaluate ChatGE on the test data we construct,
as shown in Table 2. Table 4 presents the perfor-
mance of our ChatGE, including both interaction
quality and code correctness. For comparison, we
take several representative closed-source and open-
source LLMs in a 5-shot setting as baselines. Intu-
itively, ChatGE excels in both interaction quality
and code correctness.

6.4.1 Interaction Quality
All models exhibit high interaction quality.Our
ChatGE excels across all dimensions, showcasing
exceptional capabilities in interacting with the user
throughout the interactive development process.
Compared to Llama-3.1-8B-Instruct, our fine-tuned
model excels in guidance and logic, effectively
guiding the user to develop the game logically.

6.4.2 Code Correctness
In our results, all models significantly outperform
in functional-level metrics compared to overall-

Model Interaction Quality Code Correctness
Gui. Log. Rel. Coh. Con. Overall F-ESR F-Acc ESR Acc

5-shot
GPT-3.5-turbo 94.5 96.5 100 99.0 96.5 98.0 95.8 87.9 60.0 30.0
GPT-4o 98.5 98.0 100 100 99.0 99.0 93.0 88.5 50.0 30.0
Llama-3.1-8B-Instruct 97.5 98.0 100 99.5 99.0 98.5 100 90.0 60.0 10.0

Fine-tuning
ChatGE 98.5 99.0 100 99.5 99.0 100 100 99.0 100 90.0

w/o. Pscript 98.0 97.0 100 99.0 96.5 98.5 100 98.8 100 80.0
w/o. synthesis 96.5 96.0 100 98.0 96.5 98.0 97.4 86.8 70.0 0
w/o. Stage-2 96.5 97.5 100 99.0 96.0 98.5 98.2 89.2 80.0 10.0
w. Mixed-stage 92.5 96.5 99.5 96.0 92.0 95.0 95.0 88.5 80.0 20.0

Table 4: Main results of different models and the ablation study of ChatGE. The number of functions generated
by the model can vary due to factors such as repeated modifications or missed queries. Functional-level metrics
primarily assess the correctness of the generated code without accounting for recall rate, which is instead reflected
in the overall-level metrics.

level metrics. This suggests that while LLMs excel
at producing functional code, they face challenges
when generating long, complete code. Addition-
ally, it is evident that executability is more easily
achieved than accuracy across all models, with our
model reaching a perfect ESR of 100. This indi-
cates that LLMs excel at generating code that is
syntactically executable. Notably, ChatGE outper-
forms in all metrics. It achieves an impressive F-
Acc of 99.0, outperforming the second-best model
by 9 points. Moreover, it reaches an ESR of 100,
surpassing the second-best by 20 points. Further-
more, it attains an Acc of an astounding 90, out-
stripping the second-best by 60 points.

To conduct a more in-depth analysis, we com-
pute the function-level code correctness in Table 5.
Most models excel on fixed functions and two sim-
ple variable functions: config and flow. These two
functions require only basic assignment statements
to configure the game, allowing them to generalize
effectively. However, for functions with more com-
plex code logic, namely blind, dealx, and flopx, the
baselines generally underperform, with the lowest
F-Acc reaching just 20. These results indicate that
the accumulation of errors across these functions
leads non-fine-tuned models to exhibit low correct-
ness in overall-level evaluation. It is important to
note that the model is required to be all-round at
each function; otherwise, the overall performance
will degenerate in a way of Buckets effect (Wu
et al., 2024a). Delightfully, our ChatGE achieves
near-perfect performance across all functions, re-
sulting in an Acc far exceeding the baselines.

6.5 Ablation Study

We ablate different variants from the full ChatGE
architecture, the results are presented in Table 4
and Table 5. Traning data statistics of ablations can
be found in Appendix A.

Ablation on Pscript A slight decrease can be
observed in interaction quality across nearly all
dimensions without Pscript. Additionally, F-Acc
drops by 0.2 points and Acc by 10.0 points. As
shown in Table 5, the only failure occurs on a
flopx function when compared to the complete
ChatGE architecture. This suggests that Pscript

can enhance both interaction and coding abilities
in certain cases.

Ablation on synthetic data In this setting, we
directly employ manually crafted script-code pairs,
splitting them into snippets to generate complete
interactions and interaction snippets. A slight de-
cline can be observed in interaction quality across
most dimensions, alongside a significant decrease
in code correctness, with Acc dropping to 0. No-
tably, the code correctness is even lower than that of
the 5-shot Llama-3.1-8B-Instruct. As shown in Ta-
ble 5, this decline is attributed to poor performance
on the two most challenging functions, dealx and
flopx. This can be explained by the model over-
fitting on the limited data due to the absence of
synthetic data, which leads to poor generalization.

Ablation on training strategy We conducted
comprehensive ablation experiments on our three-
stage training strategy, with the following setups:

Model config* start blind* dealx* flopx* switch bet flow* Overall
F-ESR F-Acc F-ESR F-Acc F-ESR F-Acc F-ESR F-Acc F-ESR F-Acc F-ESR F-Acc F-ESR F-Acc F-ESR F-Acc F-ESR F-Acc

5-shot
GPT-3.5-turbo 100 88.9 100 100 87.5 87.5 88.9 55.6 87.5 75.0 100 100 100 100 88.9 66.7 95.8 87.9
GPT-4o 100 100 100 100 70.0 70.0 90.0 90.0 100 60.0 100 100 80.0 80.0 100 100 93.0 88.5
Llama-3.1-8B-Instruct 100 100 100 100 100 100 100 50.0 100 60.0 100 100 100 100 100 66.7 100 90.0

Fine-tuning
ChatGE 100 100 100 100 100 100 100 90.0 100 100 100 100 100 100 100 100 100 99.0

w/o. Pscript 100 100 100 100 100 100 100 90.0 100 90.0 100 100 100 100 100 100 100 98.8
w/o. synthesis 100 100 100 100 100 100 88.9 22.2 100 55.6 100 100 100 100 100 100 93.8 86.8
w/o. Stage-2 100 100 100 100 100 100 90.0 20.0 90.0 60.0 100 100 100 100 100 100 98.2 89.2
w. Mixed-stage 100 100 100 100 81.8 81.8 100 33.3 90.0 90.0 90.0 90.0 81.8 81.8 100 75.0 95.0 88.5

Table 5: Function-level code correctness of different models and the ablation study of ChatGE. Functions with an
asterisk (*) are variable functions in the test set, while the remaining functions are fixed.

w/o. Stage-1, w/o. Stage-2, w/o. Stage-3, and w.
Mixed-stage. In the setups without Stage-1 and
Stage-3, the model loses its guiding and interac-
tion abilities in multi-turn scenarios as a ChatGE,
resulting in ESR and Acc values of 0. Therefore,
the results of these two settings are not reported.
This suggests that both Stage-1 and Stage-3 play
a crucial role in enhancing the model’s interac-
tion ability as a ChatGE. As shown in Table 4, the
interaction quality of the model decreases across
most dimensions without Stage-2. Additionally,
there is a significant drop in code correctness, with
Acc falling to 10.0. A sharp decline in F-Acc for
the dealx and flopx functions is clearly evident in
Table 5. This indicates that Stage-2 is essential
to the core interaction and programming capabil-
ities of the model, especially programming capa-
bilities. The Mixed-stage involves mixing all the
complete interactions and interaction snippets and
fine-tuning on them in a single stage. It mixes
Stage-2 and Stage-3. A significant decrease can be
observed in interaction quality in the Mixed-stage
setting. Additionally, there is a notable drop in code
correctness, with Acc falling to 20.0. This indicates
that a mixed-stage training strategy for complete
interactions and interaction snippets hinders both
the interaction and programmig capabilities of the
model. This suggests that our three-stage training
strategy effectively enhances the joint capability
of interaction and programmig of the LLM as a
ChatGE.

6.6 Case Study

In Table 6, we present two representative cases
comparing GPT-4o and ChatGE. In Case 1, the
code generated by GPT-4o is logically correct,
but the function call is used incorrectly. The
proper usage of “random.choice” should be “ran-
dom.choice(x)”, but it seems to have confused this
with the “random_choice” usage provided in the

Case 1 blind: Randomly choose two players as small blind and big
blind respectively. Place 1/2 minimum bet for small blind and
double minimum bet for big blind.

GPT-4o def blind(self):
def bet(player_id, amount):

self.players[player_id].bet += amount
self.players[player_id].remain -= amount

small_blind, big_blind = random.choice(self.player_ids, 2)
bet(small_blind, self.min_bet // 2)
bet(big_blind, self.min_bet * 2)

ChatGE def blind(self):
def bet(player_id, amount):

self.players[player_id].bet += amount
self.players[player_id].remain -= amount

small_blind, big_blind = random_choice(self.player_ids, 2)
bet(small_blind, self.min_bet // 2)
bet(big_blind, self.min_bet * 2)

Case 2 dealx: Deal x cards to each player and discard 1 cards from the
deck afterward.

GPT-4o def dealx(self, x):
for _ in range(x):

for player_id in self.players:
self.players[player_id][’hole’].append(self.deck.pop())

self.deck.pop()

ChatGE def dealx(self, x):
for i in range(x):

for p in self.players:
self.players[p].hole += [self.deck.pop()]

self.deck.pop()

Table 6: Case study of the results of GPT-4o and
ChatGE. Only the code part is retained.

in-context examples. Similarly, in Case 2, GPT-
4o mistakenly treated “self.players[player_id]” as a
dict. This can be attributed to its misalignment with
the engine, also known as hallucination (Ji et al.,
2023). In comparison, ChatGE is well-aligned and
does not exhibit this phenomenon in the test set.

7 Conclusion

This paper introduces the Chat Game Engine
(ChatGE) and proposes a paradigm for training
ChatGE to allows users to develop custom games
interactively using natural language. To enable an
LLM to function as a ChatGE, we instruct it to
generate script segments, code snippets and inter-
actions for each turn in the development process.
To facilitate the training process, a data synthesis

pipeline is proposed to generate sufficient training
data, as well as a three-stage progressive training
strategy to enhance the joint capability of interac-
tion and programming of the LLM. Embodied in
a poker game, we demonstrate the performance of
the ChatGE through a comprehensive evaluation.

Limitations

While our ChatGE offers exciting potential for ap-
plying LLMs as multi-turn game development, sev-
eral limitations warrant further exploration: (1)
Limited scalability: We notice that it is still very
hard to generalize ChatGE to all games or all game
engines. Instead, in this work, we choose a spe-
cific game to illustrate the idea of ChatGE. The
entire data generation and training process must
be repeated to adapt this approach to a new game.
However, all the prompts we use are designed to be
game-agnostic, making them easily adaptable for
use in other games. Of course, our future work will
definitely focuses on the scalability of ChatGE. (2)
Limited scope and modalities: Our current ChatGE
primarily support text-based games like Poker. Ad-
ditional modalities such as images, sound, or video
could enrich the game and are almost essential in
modern video games, but this expansion presents
technical and design challenges. These limitations
highlight the importance of ongoing research and
development efforts aimed at addressing the chal-
lenges associated with LLM-based game develop-
ment.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48.

Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin
Pawelczyk, and Gjergji Kasneci. 2022. Language
models are realistic tabular data generators. arXiv
preprint arXiv:2210.06280.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Bharath Chintagunta, Namit Katariya, Xavier Amatri-
ain, and Anitha Kannan. 2021. Medically aware
gpt-3 as a data generator for medical dialogue sum-
marization. In Machine Learning for Healthcare
Conference, pages 354–372. PMLR.

Sam Davidson, Salvatore Romeo, Raphael Shu, James
Gung, Arshit Gupta, Saab Mansour, and Yi Zhang.
2023. User simulation with large language models
for evaluating task-oriented dialogue. arXiv preprint
arXiv:2309.13233.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Mirjam Palosaari Eladhari. 2018. Re-tellings: The
fourth layer of narrative as an instrument for critique.
In Interactive Storytelling - 11th International Con-
ference on Interactive Digital Storytelling, ICIDS
2018, Dublin, Ireland, December 5-8, 2018, Proceed-
ings, volume 11318 of Lecture Notes in Computer
Science, pages 65–78. Springer.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar.
2022. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In Advances
in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Roberto Gallotta, Graham Todd, Marvin Zammit, Sam
Earle, Antonios Liapis, Julian Togelius, and Geor-
gios N Yannakakis. 2024. Large language models
and games: A survey and roadmap. arXiv preprint
arXiv:2402.18659.

Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang, Dan
Shi, Linhao Yu, Yan Liu, Jiaxuan Li, Bojian Xiong,
Deyi Xiong, et al. 2023. Evaluating large language
models: A comprehensive survey. arXiv preprint
arXiv:2310.19736.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1–38.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhi-
meng Jiang, Chia-Yuan Chang, and Xia Hu. 2023.
Growlength: Accelerating llms pretraining by pro-
gressively growing training length. arXiv preprint
arXiv:2310.00576.

https://doi.org/10.1007/978-3-030-04028-4_5
https://doi.org/10.1007/978-3-030-04028-4_5
http://papers.nips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html

Heinrich Küttler, Nantas Nardelli, Alexander H. Miller,
Roberta Raileanu, Marco Selvatici, Edward Grefen-
stette, and Tim Rocktäschel. 2020. The nethack learn-
ing environment. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual.

Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel.
2024. World model on million-length video and lan-
guage with blockwise ringattention. arXiv preprint
arXiv:2402.08268.

Ryan Lowe, Abhinav Gupta, Jakob N. Foerster, Douwe
Kiela, and Joelle Pineau. 2020. On the interaction
between supervision and self-play in emergent com-
munication. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Xiang Luo, Zhiwen Tang, Jin Wang, and Xuejie Zhang.
2024. Duetsim: Building user simulator with dual
large language models for task-oriented dialogues.
In Proceedings of the 2024 Joint International Con-
ference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 5414–5424.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin A. Riedmiller. 2013. Playing atari with
deep reinforcement learning. CoRR, abs/1312.5602.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Noah Ranella and Markus Eger. 2023. Towards auto-
mated video game commentary using generative AI.
In Proceedings of the Experimental Artificial Intelli-
gence in Games Workshop co-located with the 19th
AAAI Conference on Artificial Intelligence and In-
teractive Digital Entertainment (AIIDE 2023), Salt
Lake City, Utah, USA, October 8, 2023, volume 3626
of CEUR Workshop Proceedings. CEUR-WS.org.

Timo Schick and Hinrich Schütze. 2021. Generating
datasets with pretrained language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6943–
6951.

Ivan Sekulić, Silvia Terragni, Victor Guimarães, Nghia
Khau, Bruna Guedes, Modestas Filipavicius, An-
dre Ferreira Manso, and Roland Mathis. 2024. Reli-
able llm-based user simulator for task-oriented dia-
logue systems. In Proceedings of the 1st Workshop
on Simulating Conversational Intelligence in Chat
(SCI-CHAT 2024), pages 19–35.

Murray Shanahan, Kyle McDonell, and Laria Reynolds.
2023. Role play with large language models. Nat.,
623(7987):493–498.

Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu.
2023a. Character-llm: A trainable agent for role-
playing. arXiv preprint arXiv:2310.10158.

Zhihong Shao, Yeyun Gong, Yelong Shen, Min-
lie Huang, Nan Duan, and Weizhu Chen. 2023b.
Synthetic prompting: Generating chain-of-thought
demonstrations for large language models. In Inter-
national Conference on Machine Learning, pages
30706–30775. PMLR.

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin
Zhang, Zhenfang Chen, David Cox, Yiming Yang,
and Chuang Gan. 2024. Principle-driven self-
alignment of language models from scratch with
minimal human supervision. Advances in Neural
Information Processing Systems, 36.

Silvia Terragni, Modestas Filipavicius, Nghia Khau,
Bruna Guedes, André Manso, and Roland Mathis.
2023. In-context learning user simulators for
task-oriented dialog systems. arXiv preprint
arXiv:2306.00774.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Muhtar Çagkan Uludagli and Kaya Oguz. 2023. Non-
player character decision-making in computer games.
Artif. Intell. Rev., 56(12):14159–14191.

Nidhi Vakil and Hadi Amiri. 2023. Complexity-guided
curriculum learning for text graphs. arXiv preprint
arXiv:2311.13472.

Rafael Valencia-García, Katty Lagos-Ortiz, Gema
Alcaraz-Mármol, Javier del Cioppo, and Nestor Vera-
Lucio. 2016. Technologies and innovation: Sec-
ond international conference, citi 2016, guayaquil,
ecuador, november 23-25, 2016. Proceedings. Com-
munications in Computer and Information Science,
658.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss,
Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai,
John P. Agapiou, Max Jaderberg, Alexander Sasha
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin

https://proceedings.neurips.cc/paper/2020/hash/569ff987c643b4bedf504efda8f786c2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/569ff987c643b4bedf504efda8f786c2-Abstract.html
https://openreview.net/forum?id=rJxGLlBtwH
https://openreview.net/forum?id=rJxGLlBtwH
https://openreview.net/forum?id=rJxGLlBtwH
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://ceur-ws.org/Vol-3626/paper7.pdf
https://ceur-ws.org/Vol-3626/paper7.pdf
https://doi.org/10.1038/S41586-023-06647-8
https://doi.org/10.1007/S10462-023-10491-7
https://doi.org/10.1007/S10462-023-10491-7

Dalibard, David Budden, Yury Sulsky, James Mol-
loy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang,
Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yo-
gatama, Dario Wünsch, Katrina McKinney, Oliver
Smith, Tom Schaul, Timothy P. Lillicrap, Koray
Kavukcuoglu, Demis Hassabis, Chris Apps, and
David Silver. 2019. Grandmaster level in starcraft
II using multi-agent reinforcement learning. Nat.,
575(7782):350–354.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2023a. Voyager: An open-ended
embodied agent with large language models. CoRR,
abs/2305.16291.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi
Chen, Lifan Yuan, Hao Peng, and Heng Ji. 2023b.
Mint: Evaluating llms in multi-turn interaction
with tools and language feedback. arXiv preprint
arXiv:2309.10691.

Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi
Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang,
Rui Xie, Jindong Wang, Xing Xie, et al. 2023c.
Pandalm: An automatic evaluation benchmark for
llm instruction tuning optimization. arXiv preprint
arXiv:2306.05087.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Hongqiu Wu, Linfeng Liu, Hai Zhao, and Min Zhang.
2023. Empower nested boolean logic via self-
supervised curriculum learning. arXiv preprint
arXiv:2310.05450.

Hongqiu Wu, Xingyuan Liu, Yan Wang, and Hai Zhao.
2024a. Instruction-driven game engine: A poker case
study. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 507–519.

Weiqi Wu, Hongqiu Wu, Lai Jiang, Xingyuan Liu, Jiale
Hong, Hai Zhao, and Min Zhang. 2024b. From role-
play to drama-interaction: An llm solution. arXiv
preprint arXiv:2405.14231.

Wei Xiang, Hanfei Zhu, Suqi Lou, Xinli Chen,
Zhenghua Pan, Yuping Jin, Shi Chen, and Lingyun
Sun. 2024. Simuser: Generating usability feedback
by simulating various users interacting with mobile
applications. In Proceedings of the CHI Conference
on Human Factors in Computing Systems, pages 1–
17.

Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xi-
aolong Wang, Weidong Liu, and Yang Liu. 2023.
Exploring large language models for communication
games: An empirical study on werewolf. CoRR,
abs/2309.04658.

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng,
Alexander J Ratner, Ranjay Krishna, Jiaming Shen,
and Chao Zhang. 2024a. Large language model as
attributed training data generator: A tale of diversity
and bias. Advances in Neural Information Processing
Systems, 36.

Zhuohao Yu, Chang Gao, Wenjin Yao, Yidong Wang,
Wei Ye, Jindong Wang, Xing Xie, Yue Zhang, and
Shikun Zhang. 2024b. KIEval: A knowledge-
grounded interactive evaluation framework for large
language models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 5967–5985,
Bangkok, Thailand. Association for Computational
Linguistics.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

A Ablation statistics

seed synthesis
Com. Snip. Com. Snip.
(20) (180)) (36) (3718)

ChatGE ✓ ✓ ✓ ✓
w/o. Pscript ✓ ✓ ✓ ✓
w/o. synthesis ✓ ✓
w/o. Stage-2 ✓ ✓
w. Mixed-stage ✓ ✓ ✓ ✓

Table 7: Traning data statistics of ablations. Com. refers
to complete interactions and Snip. refers to interaction
snippets.

B Prompts Demonstration

In this section, we provide the prompts used in the
paper. Each {...} component above will be substi-
tuted with corresponding information. For more
details, please refer to our code. These prompts
are not designed for any specific game, they can be
used to build a ChatGE for any {Game_name}.

Table 8-10 present the prompts used in the
Data Generation. Table 11-12 present the sys-
tem prompts for models. Table 13-14 present the
prompts used in the Evaluation.

https://doi.org/10.1038/S41586-019-1724-Z
https://doi.org/10.1038/S41586-019-1724-Z
https://doi.org/10.48550/ARXIV.2305.16291
https://doi.org/10.48550/ARXIV.2305.16291
https://doi.org/10.48550/ARXIV.2309.04658
https://doi.org/10.48550/ARXIV.2309.04658
https://doi.org/10.18653/v1/2024.acl-long.325
https://doi.org/10.18653/v1/2024.acl-long.325
https://doi.org/10.18653/v1/2024.acl-long.325

Prompt for New Script-code Pairs Generation

Generate new code snippet and the corresponding script segment of a {Game_name} game based on the given original
code snippet and the corresponding original script segment.

1. Modify the code logic to obtain a new code segment and output the corresponding script segment.
2. The new code snippet is obtained by modifying the original code snippet.
3. Keep the input parameters unchanged, do not introduce new input parameters.
4. The generated new code snippet should not introduce new instance attributes and involved methods such as ‘self.xxx‘
or ‘self.xxx...‘ compared to the original code snippet. The generated new code snippet can only include instance
attributes and instance methods involved in the original code snippet. You cannot create new ones. For example, there is
a original code snippet below:

def bet_done(self, wait_to_bet):
all_bet = [self.players[p].bet for p in self.get_unfold_players()]
if not wait_to_bet and all([b == all_bet[0] for b in all_bet]):

return True
return False

In this code snippet, the instance attributes and instance methods involved are only ‘self.players‘ and
‘self.get_unfold_players()‘. Therefore, in the new code snippet generated from this original code snippet, the
instance attributes and instance methods involved should also only be ‘self.players‘ and ‘self.get_unfold_players()‘,
other created ones such as ‘self.group‘, ‘self.discard_pile‘, ‘self.burn_pile‘, ‘self.burn_card‘ are not allowed to be used.
5. Do not use ‘print‘ or logging information.
6. The script segment can be seen as a description of the code snippet.
7. Try to be creative and diverse.
8. The output format should follow the original, without any redundant information.

——————————
Examples
{In-context Examples}
——————————

Start of Official Requests
original code snippet:
{original_code}

original script segment:
{original_script}

Table 8: Prompt for generating new pairs in Data Generation for ChatGE.

Prompt for Interaction Snippets Generation

Generate a dialogue between a user and an assistant based on the following rules and given script segment and code
snippet.

1. The user edits game script segments using natural language during interactions with the assistant.
2. The assistant interacts with the user to achieve interactive game development. The assistant guides the user in editing
game script segments, generates corresponding code snippets, and interacts with the user through dialogue.
3. Each turn of the assistant’s output should include three processes: "script", "code", and "utter", corresponding to
three blocks: <script></script>, <code></code>, <utter></utter>. Formally, these three blocks must exist, even if the
content is empty.
4. The ’script’ process: The assistant generates the game script segment based on the user’s input of the current turn.
Return modifications to the script as changes, rather than returning the entire script. The script is a Python dict, so you
can use simple Python code to represent modifications to it, such as: script[’xxx’] = ’xxx’. The ’script’ process should
be enclosed using ’<script>’ tag.
5. The ’code’ process: The assistant generates the corresponding Python code snippet based on the game script segment
from the ’script’ process. The complete code is a CustomGame class that inherits from GameBase class, but only the
methods related to the given script segment need to be generated. The ’code’ process should be enclosed using ’<code>’
tag.
6. The ’utter’ process: The assistant interacts with the user, including responding to the user’s input of the current turn,
summarizing the results of the current turn, and guiding the user to continue with the next turn of interaction. The ’utter’
process should be enclosed using ’<utter>’ tag.
7. The script segment and code snippet have already been provided. In the assistant’s ’script’ and ’code’ process, use the
given script segment and code snippet; do not write your own.
8. The assistant does not know about the existence of the script segment in the dialogue and needs to obtain it from the
user’s input.
9. The given script segment and code snippet are essentially an outline of the plot development. The assistant’s ’script’
and ’code’ process must be entirely derived from or inferred from the user’s input. The user’s input should be more
natural language-based and not a direct copy of the given script segement.
10. The dialogue must cover and only cover the given script segment, and no other content should appear.

{Formatting Instruction}

——————————
Examples
{In-context Examples}
——————————

Start of Official Requests
script segment:
{script segment}

code snippet:
{code snippet}

dialogue:

Table 9: Prompt for generating interaction snippets in Data Generation for ChatGE.

Prompt for Complete Interactions Generation

Generate a dialogue between a user and an assistant based on the following rules and given script segment and code
snippet.

1. The user edits game script segments using natural language during interactions with the assistant.
2. The assistant interacts with the user to achieve interactive game development. The assistant guides the user in editing
game script segments, generates corresponding code snippets, and interacts with the user through dialogue.
3. Each turn of the assistant’s output should include three processes: "script", "code", and "utter", corresponding to
three blocks: <script></script>, <code></code>, <utter></utter>. Formally, these three blocks must exist, even if the
content is empty.
4. The ’script’ process: The assistant generates the game script segment based on the user’s input of the last turn. Return
modifications to the script as changes, rather than returning the entire script. The script is a Python dict, so you can
use simple Python code to represent modifications to it, such as: script[’xxx’] = ’xxx’. The ’script’ process should be
enclosed using ’<script>’ tag.
5. The ’code’ process: The assistant generates the corresponding Python code snippet based on the game script segment
from the ’script’ process. The complete code is a CustomGame class that inherits from GameBase class, but only the
methods related to the given script segment need to be generated. The ’code’ process should be enclosed using ’<code>’
tag.
6. The ’utter’ process: The assistant interacts with the user, including responding to the user’s input of the last turn,
summarizing the results of the current turn, and guiding the user to continue with the current turn of interaction. The
’utter’ process should be enclosed using ’<utter>’ tag.
7. The script segment and code snippet have already been provided. You need to randomly distribute them across
multiple turns and generate an interactive dialogue between the assistant and the user. This means the assistant guides
the user step by step to complete this game script segment. In a single turn of dialogue, the user’s input should not
contain too much information. If a large input is required, it should be divided into multiple turns.
8. In the assistant’s ’script’ and ’code’ process, use the given script segment and code snippet; do not write your own.
9. The dialogue must cover and only cover all the given script segment, and no other content should appear.
10. The assistant does not know about the existence of the script segment in the dialogue and needs to obtain it from the
user’s input.
11. The given script segment and code snippet are essentially an outline of the plot development. The assistant’s ’script’
and ’code’ process must be entirely derived from or inferred from the user’s input. The user’s input should be more
natural language-based and not a direct copy of the given script segement.
12. In the first turn, the ’script’ and ’code’ process of the assistant should be empty because the user has not yet input a
game script segment. In the first turn, the assistant should greet the user and start guiding them. In the end, after the user
has completed the entire script under the assistant’s guidance, the assistant should convey to the user that the game
development is complete.
13. The assistant should guide the user step by step along a specific line to complete each part of the game script:
{Game_script_line}

{Formatting Instruction}

——————————
Examples
{In-context Examples}
——————————

Start of Official Requests
script segment:
{script segment}

code snippet:
{code snippet}

dialogue:

Table 10: Prompt for generating complete interactions in Data Generation for ChatGE.

System Prompt for Baselines in a 5-shot Setting

You are a helpful assistant assigned to interact with the user for the interactive development of a {Game_name} game.

1. The user edits game script segments using natural language.
2. The assistant guides the user in editing game script segments, generates corresponding code snippets, and interacts
with the user through dialogue.
3. Each turn of the assistant’s output should include three processes: "script", "code", and "utter", corresponding to
three blocks: <script></script>, <code></code>, <utter></utter>. Formally, these three blocks must exist, even if the
content is empty.
4. The ’script’ process: The assistant generates the game script segment based on the user’s input of the current turn.
Return modifications to the script as changes, rather than returning the entire script. The script is a existing Python dict,
so you can use simple Python code to represent modifications to it, such as: script[’xxx’] = ’xxx’. The ’script’ process
should be enclosed using ’<script>’ tag.
5. The ’code’ process: The assistant generates the corresponding Python code snippet based on the game script segment
from the ’script’ process. The complete code is a CustomGame class that inherits from GameBase class, but only the
methods related to the given script segment need to be generated. The ’code’ process should be enclosed using ’<code>’
tag.
6. The ’utter’ process: The assistant interacts with the user, including responding to the user’s input of the current turn,
summarizing the results of the current turn, and guiding the user to continue with the next turn of interaction. The ’utter’
process should be enclosed using ’<utter>’ tag.
7. The assistant’s ’script’ and ’code’ process must be entirely derived from or inferred from the user’s input. If the user’s
input lacks the required information, ask the user for further details, and both the ’script’ process and the ’code’ process
of the assistant should be empty.
8. If the user’s input is unrelated to the script or insufficient to cause changes in the script, the ’script’ process and the
’code’ process of the assistant should both be empty.
9. If the user has any questions, answer them instead of randomly modifying the script and code on your own.
10. In the first turn, the ’script’ and ’code’ process of the assistant should be empty because the user has not yet input a
game script segment. In the first turn, the assistant should greet the user and start guiding them. In the end, after the user
has completed the entire script under the assistant’s guidance, the assistant should convey to the user that the game
development is complete.
11. The assistant should guide the user step by step along a specific line to complete each part of the game script,
referring to the given script template.

{Formatting Instruction}

script template
{script template}

——————————
Examples
{In-context Examples}
——————————

Table 11: System prompt for baselines in a 5-shot Setting.

System Prompt for ChatGE

You are a helpful assistant assigned to interact with the user for the interactive development of a {Game_name} game.

1. The user edits game script segments using natural language.
2. The assistant guides the user in editing game script segments, generates corresponding code snippets, and interacts
with the user through dialogue.
3. Each turn of the assistant’s output should include three processes: "script", "code", and "utter", corresponding to
three blocks: <script></script>, <code></code>, <utter></utter>. Formally, these three blocks must exist, even if the
content is empty.
4. The ’script’ process: The assistant generates the game script segment based on the user’s input of the current turn.
Return modifications to the script as changes, rather than returning the entire script. The script is a existing Python dict,
so you can use simple Python code to represent modifications to it, such as: script[’xxx’] = ’xxx’. The ’script’ process
should be enclosed using ’<script>’ tag.
5. The ’code’ process: The assistant generates the corresponding Python code snippet based on the game script segment
from the ’script’ process. The complete code is a CustomGame class that inherits from GameBase class, but only the
methods related to the given script segment need to be generated. The ’code’ process should be enclosed using ’<code>’
tag.
6. The ’utter’ process: The assistant interacts with the user, including responding to the user’s input of the current turn,
summarizing the results of the current turn, and guiding the user to continue with the next turn of interaction. The ’utter’
process should be enclosed using ’<utter>’ tag.
7. The assistant’s ’script’ and ’code’ process must be entirely derived from or inferred from the user’s input. If the user’s
input lacks the required information, ask the user for further details, and both the ’script’ process and the ’code’ process
of the assistant should be empty.
8. If the user’s input is unrelated to the script or insufficient to cause changes in the script, the ’script’ process and the
’code’ process of the assistant should both be empty.
9. If the user has any questions, answer them instead of randomly modifying the script and code on your own.

Table 12: System prompt for ChatGE.

System Prompt for Interactor

You are a user (as in the Example) of an interactive {Game_name} game development application of a {Game_name}
game, interacting with me (the assistant).

1. You should attempt to use natural language to edit game script segments.
2. You should focus on the "utter" part enclosed by the <utter></utter> tag in my output and interact with it according
to its guidance.
3. Your response does not need to include any tags.
4. A game script will be given. Assume this is the game script you have in mind. You need to interactively present your
ideas under the guidance of the me step by step, i.e., respond based on the relevant parts of the given script. Try not to
output too much in one turn.
5. Try to use natural language instead of directly copying the given script segments.
6. Your responses should be as concise as possible and should not include the thought process.

——————————
Examples
{In-context Examples}
——————————

Start of Official Requests
given game script:
{game script}

Table 13: System prompt for interactor in evaluation.

System Prompt for Evaluator

You are an objective evaluator in an interview. Your task is to evaluate a assistant’s performance during a series of
interactions with an user. The conversation alternates between the user (marked with ’user:’) and the assistant (marked
with ’assistant’). Evaluate the assistant’s performance in the interactions as well as in context, based on the following
aspects independently, rating each on a scale from 1 (Poor) to 4 (Good):

Guidance: How the response guide the user step-by-step to complete the game.
Logic: Logical structure and soundness of reasoning, including the support and validity of conclusions. Whether
conclusions are well-supported and arguments are free from logical fallacies.
Relevance: How the response relates to the topic. Ensure responses are within the scope of the "assistant" role, avoiding
unpermitted role shifts.
Coherence: How well the response integrates into the context. Consistency with previous statements and overall
conversational flow.
Conciseness: Brevity and clarity of the response. Clear, to-the-point communication, free from extraneous elaboration
or repetitive words.

Scoring Guide:
1 (Poor): Significant deficiencies or inaccuracies in the aspect.
2 (Below Average): Noticeable weaknesses, partially on target but lacking in several areas.
3 (Above Average): Solid and competent, mostly on target with only a few minor shortcomings.
4 (Good): Strong performance, fully meets and often surpasses expectations.

Evaluation Rules:
1. Evaluate the assistant consistently and objectively without bias, strictly adhering to scoring guide.
2. Score from 1 to 4 for each aspect independently, using only integers. Low score in one aspect should not influence
another aspect. Write a brief comment before scoring in the JSON output structure.
3. Write a overall comment and then give an overall score (same scoring guide). The overall comment should be brief
and clear. Consider the performance throughout the interaction, not just in the latest round.
4. Format of Evaluation: Output in JSON format strictly following the template, without any other words:
guidance": "comment": "", "score": 0, "logic": "comment": "", "score": 0, "relevance": "comment": "", "score": 0,
"coherence": "comment": "", "score": 0, "conciseness": "comment": "", "score": 0, "overall": "comment": "", "score": 0

interactions:
{dialogue}

Evaluation:

Table 14: System prompt for evaluator in evaluation.

C Example Demonstration

A complete dialogue of User and ChatGE

user:
[start interactive game development]

assistant:
<script>
</script>
<code>
</code>
<utter>
Hello, I am your game development assistant. Let's interactively develop a new poker game.

Alright, let's start by configuring the essential parameters for our game. Could you
provide the number of players and the betting range (minimum and maximum bet)?

</utter>

user:
There should be 3 players. The minimum bet should be 10 and the maximum bet should be 1000.

assistant:
<script>
script['Config']['Number of players'] = 3
script['Config']['Min bet'] = 10
script['Config']['Max bet'] = 1000
</script>
<code>
def config(self):

self.n_players = 3
self.min_bet = 10
self.max_bet = 1000

</code>
<utter>
Great! We've set up the number of players and the betting range. Now, what about the suits and

card value rank in the deck?
</utter>

user:
I want to use 4 suits: H, D, C, S. The card ranks should be from 2 to 12 and an additional

rank 1.

assistant:
<script>
script['Config']['Suit'] = ['H', 'D', 'C', 'S']
script['Config']['Card value rank'] = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1]
</script>
<code>
def config(self):

self.n_players = 3
self.min_bet = 10
self.max_bet = 1000
self.suit = ['H', 'D', 'C', 'S']
self.value = [str(v) for v in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1]]

</code>
<utter>
Perfect! The suits and card value rank have been configured. Do you need to rank the suits or

should we ignore suit ranking?
</utter>

user:
No need to rank the suits.

assistant:
<script>
script['Config']['Suit have rank'] = False
</script>
<code>

def config(self):
self.n_players = 3
self.min_bet = 10
self.max_bet = 1000
self.suit = ['H', 'D', 'C', 'S']
self.suit_have_rank = False
self.value = [str(v) for v in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1]]

</code>
<utter>
Got it! Suits won't have any inherent ranking. What about the card combinations rank? You can

freely arrange the following card combinations: High Card, Pair, Two Pair, Three of a
Kind, Full House, Four of a Kind, Straight, Flush, Straight Flush.

</utter>

user:
High Card, Pair, Two Pair, Three of a Kind, Straight, Flush, Full House, Four of a Kind,

Straight Flush

assistant:
<script>
script['Config']['Card combinations rank'] = ['High Card', 'Pair', 'Two Pair', 'Three of a

Kind', 'Straight', 'Flush', 'Full House', 'Four of a Kind', 'Straight Flush']
</script>
<code>
def config(self):

self.n_players = 3
self.min_bet = 10
self.max_bet = 1000
self.suit = ['H', 'D', 'C', 'S']
self.suit_have_rank = False
self.value = [str(v) for v in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1]]
self.card_combinations_rank = ['High Card', 'Pair', 'Two Pair', 'Three of a Kind', '
Straight', 'Flush', 'Full House', 'Four of a Kind', 'Straight Flush']

</code>
<utter>
Good! The configuration is complete. Now, let's move on to the phase. Please provide the Phase

details.
</utter>

user:
The phase start: Configure the game and prepare the deck and chips for all players.

assistant:
<script>
script['Phase']['start'] = 'Configure the game, prepare the deck and chips for all players.'
</script>
<code>
def start(self):

self.deck = []
self.community = []
for v in self.value:

for s in self.suit:
self.deck += [''.join([s,v])]

for i in range(self.n_players):
self.players[f'p{i+1}'].hole = []
self.players[f'p{i+1}'].fold = False

</code>
<utter>
Great. The phase 'start' has been added. Are there any other phases?
</utter>

user:
Good. There is a phase called 'shuffle', which shuffles the deck.

assistant:
<script>
script['Phase']['shuffle'] = 'Shuffle the deck.'

</script>
<code>
def shuffle(self):

shuffle(self.deck)
</code>
<utter>
Get! The phase 'shuffle' has been added. Are there any other phases?
</utter>

user:
I'd like to add a Phase 'blind' where we randomly select two players as the big blind and

small blind. The small blind and big blind both place the minimum bet.

assistant:
<script>
script['Phase']['blind'] = 'Randomly choose two players as big blind and small blind

respectively. Place minimum bet for small blind and minimum bet for big blind.'
</script>
<code>
def blind(self):

def bet(player_id, amount):
self.players[player_id].bet += amount
self.players[player_id].remain -= amount

small_blind, big_blind = random_choice(self.player_ids, 2)
bet(small_blind, self.min_bet)
bet(big_blind, self.min_bet)

</code>
<utter>
Alright, I've added the blind phase. Are there any other phases?
</utter>

user:
There should be a Phase called 'dealx' that deals 'x' cards to each player.

assistant:
<script>
script['Phase']['dealx'] = 'Deal x cards to each player.'
</script>
<code>
def dealx(self, x):

for i in range(x):
for p in self.players:

self.players[p].hole += [self.deck.pop()]
</code>
<utter>
OK. The phase 'dealx' has been added. Are there any other phases?
</utter>

user:
switch: Query each player to discard a number of cards and draw the same number of new cards

from the deck.

assistant:
<script>
script['Phase']['switch'] = 'Query each player to discard a number of cards and draw the same

number of new cards from the deck.'
</script>
<code>
def switch(self, switch_indices, player_id):

for i in switch_indices:
self.players[player_id].hole[i] = self.deck.pop()

</code>
<utter>
Good! The phase 'dealx' has been added. Are there any other phases?
</utter>

user:

bet: Query each player to bet until all unfolded players have placed the highest bet or there
is only one unfolded player.

assistant:
<script>
script['Phase']['bet'] = 'Query each player to bet until all unfolded players have placed the

highest bet or there is only one unfolded player.'
</script>
<code>
def bet_done(self, wait_to_bet):

all_bet = [self.players[p].bet for p in self.get_unfold_players()]
if not wait_to_bet and all([b==all_bet[0] for b in all_bet]):

return True
return False

</code>
<utter>
OK. The phase 'bet' has been added. Are there any other phases?
</utter>

user:
There should be a flopx phase, where discard one card from the deck and flop x cards from the

deck to the community.

assistant:
<script>
script['Phase']['flopx'] = 'Discard one card from the deck. Flop x cards from the deck to the

community.'
</script>
<code>
def flopx(self, x):

self.deck.pop()
for i in range(x):

self.community += [self.deck.pop()]
</code>
<utter>
OK. The phase 'flopx' has been added. Are there any other phases?
</utter>

user:
No, that's all phases for now.

assistant:
<script>
</script>
<code>
</code>
<utter>
Great! The Phase is complete. Now, let's set up the flow for the game with these phases and

the 'show' and 'prize' addtionally at the end.
</utter>

user:
The flow should be: start, shuffle, blind, deal2, bet, flop3, bet, flop1, bet, flop1, bet,

show, prize.

assistant:
<script>
script['Flow'] = ['start', 'shuffle', 'blind', 'deal2', 'bet', 'flop3', 'bet', 'flop1', 'bet',

'flop1', 'bet', 'show', 'prize']
</script>
<code>
def set_flow(self):

self.flow = ['start', 'shuffle', 'blind', 'deal2', 'bet', 'flop3', 'bet', 'flop1', 'bet',
'flop1', 'bet', 'show', 'prize']

</code>
<utter>
Excellent! The flow is set up, everything is ready. You have successfully created a new game!
</utter>

	Introduction
	Related works
	ChatGE
	Overview
	Formulation

	Data Generation
	Training Strategy
	Experiments
	Dataset
	Setup
	Metrics
	Main Results
	Interaction Quality
	Code Correctness

	Ablation Study
	Case Study

	Conclusion
	Ablation statistics
	Prompts Demonstration
	Example Demonstration

