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SUMMARY

Single-cell analysis has transformed our understanding of cellular diversity, offering insights
into complex biological systems. Yet, manual data processing in single-cell studies poses
challenges, including inefficiency, human error, and limited scalability. To address these
issues, we propose the automated workflow cellSight, which integrates high-throughput
sequencing in a user-friendly platform. By automating tasks like cell type clustering, feature
extraction, and data normalization, cellSight reduces researcher workload, promoting focus
on data interpretation and hypothesis generation. Its standardized analysis pipelines and
quality control metrics enhance reproducibility, enabling collaboration across studies.
Moreover, cellSight's adaptability supports integration with emerging technologies, keeping
pace with advancements in single-cell genomics. cellSight accelerates discoveries in single-
cell biology, driving impactful insights and clinical translation. It is available with documentation
and tutorials at https://github.com/omicsEye/cellSight.

KEYWORDS

Single-cell analysis; Intercellular communication; Cell interaction; Software; Bioinformatics

INTRODUCTION

The advent of high-throughput single-cell technologies has generated unprecedented volumes
of biological data, presenting significant computational challenges in processing, analyzing,
and interpreting cellular heterogeneity and dynamics'™. The field of single-cell genomics
emphasizes the growing need for sophisticated computational tools®® capable of handling the
increasing complexity of data analysis, particularly in understanding cellular heterogeneity "-°
and their temporal dynamics. The computational demands are further amplified by recent
technological advances in single-cell methodologies, such as droplet-based''" and plate-
based assays'?'3, which can generate data from thousands to millions of individual cells in a
single experiment.

The computational complexity of single-cell analysis extends beyond mere data volume ',
Current analytical pipelines must address multiple challenges, including batch effect
correction, dimensionality reduction, feature selection, and cell type identification'".
Traditional computational approaches often rely on manual quality control(QC) steps and
differential expression analyses, which are computationally intensive and prone to
reproducibility issues and human error'82°, These challenges are compounded by the high-
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dimensional nature of single-cell data, where each cell is characterized by the expression
levels of tens of thousands of genes?'%,

To address these computational challenges, we introduce cellSight, an innovative automated
computational framework specifically designed to handle the complexity and scale of single-
cell data analysis?>24. Our solution integrates state-of-the-art computational methods for data
processing, visualization, and interpretation. Central to cellSight's architecture is its robust QC
pipeline integrated with statistical modeling and differential expression analyses by
considering the usual linear and generalized linear models, emphasizing the role of zero-
inflation in the interval data. The results are used in the pipeline to analyze intercellular
communication networks during homeostasis.

cellSight represents a significant advance in computational biology, providing an automated,
end-to-end solution that addresses key computational bottlenecks in single-cell analysis?®.
The framework incorporates parallel processing capabilities and optimized algorithms for
handling large-scale datasets while maintaining statistical rigor and biological relevance. By
automating complex computational tasks, cellSight not only enhances the efficiency of single-
cell analysis but also improves reproducibility and reduces computational overhead?.

To validate our computational framework, we applied cellSight to two distinct datasets: a
mouse skin injury model and a previously published skin aging study?’. Our automated
pipeline successfully reproduced the findings from the skin aging study while generating novel
insights into the role of fibroblasts during the healing process in the mouse injury model. These
results demonstrate the robustness and versatility of our computational approach in handling
diverse biological contexts while maintaining computational efficiency.

RESULTS

DYNAMICS OF CELLS IN INJURY-INDUCED SKIN INFLAMMATION

An epithelium covers the outer layer of skin on all animals, protecting against damage, water
loss, and infection. When the epithelial layer is damaged, the body swiftly induces a plethora
of molecular and cellular changes to repair the tissue. The process of healing has been
characterized as three major overlapping phases?-°, The first stage is inflammation, which is
prompted as the tissue is damaged, involves the recruitment and activation of pro-
inflammatory immune cells. The second phase involves the creation of granular tissue and a
new epithelium over the injured area. The final stage is the remodeling of the newly generated
tissue, particularly the extracellular matrix. The healing process is a time-intensive process
that can take months.

Four distinct datasets were meticulously collected from a comprehensive study involving two
groups of mice: two datasets from injured skin and two from uninjured skin. This meticulous
selection of datasets aimed to unravel the intricate molecular roles and dynamics occurring
during the process of injury. Each dataset represents a snapshot of the cellular landscape at
a specific point in time, capturing the unique gene expression profiles and cellular responses
associated with injury and contrasting them with those from uninjured samples. Including
injured and uninjured samples provides a valuable comparative framework, allowing
researchers to pinpoint differentially expressed genes and pathways specific to the injury
context. This approach enables a thorough exploration of the molecular mechanisms
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82 underlying the response to injury, potentially revealing critical insights into the cellular
83  processes, signaling pathways, and dynamic changes in gene expression that contribute to
84  tissue repair or exacerbate damage. The carefully curated datasets form the foundation for a
85 detailed and nuanced analysis, fostering a deeper understanding of the roles played by
86  specific genes and cellular components in the context of injury and recovery in the mouse
87  model.
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89 Figure 1. Single-cell Analysis Pipeline for Transcriptional Profiling. (A) Single-nucleus RNA expression
90 heatmap displaying gene expression patterns across individual cells (Cell 1, Cell 2,..., Cell N). (B) Quality control
91 is based on principal components to distinguish viable cells from unreliable data points. (C) Dataset integration
92 through canonical correlation analysis (CCA), merging reference and query datasets to identify common cell
93 populations. (D) High-dimensional clustering visualization showing distinct cell type populations with annotated
94 labels (e.g., Endothelial Cells, Fibroblasts) created in the previous step. (E) Downstream analyses featuring circular
95 segmented plots of cell-cell interactions and the significance of the disease states visualized by box plots and
96 heatmaps. (F) cellSight workflow: Data normalization and integration, cluster annotation, differential expression
97 (Tweedieverse), trajectory analysis (Monocle3), pathway analysis (omePath), and cell-cell interaction mapping
98  (CellChat).

99 cellSight’s pipeline streamlined the complex single-cell data analysis into a straightforward

100 and efficient process, as demonstrated in our study of skin injury response. Through
101 automated quality control, normalization, and clustering, we successfully detected
102  differentially expressed genes between injured and naive samples, revealing the direct
103 influence of fibroblast subtypes on the wound healing process. The integration module
104 enabled an overarching visualization of the differences in biological states across sample
105 types, while cell-cell interaction analysis systematically mapped the multifaceted
106  communication networks governing the coordinated healing response. This case study
107  demonstrates the ability of researchers to rapidly extract biologically meaningful insights from
108 complex single-cell data without requiring exhaustive computational expertise.

109 To illustrate the end-to-end automation functionalities of cellSight, we ran our developed
110  pipeline on single-cell datasets from a mouse skin injury model. The automated pipeline
111 successfully processed four datasets consisting of 39,466 cells over 32,285 genes, thereby
112  removing the need for manual data manipulation and format conversion, which typically
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113  consumes much time for researchers. cellSight's quality control module automatically applied
114  optimized filtering thresholds (RNA count >200, unique genes >2500, total RNA molecules
115  >8000, mitochondria percentage = 0) without the need for manual parameter tuning or iterative
116  tuning cycles. The pipeline then successfully performed canonical correlation analysis for
117  dataset integration—a computationally demanding step that typically necessitates expert
118  expertise—and carried out unsupervised clustering that revealed 21 cell populations.
119  Moreover, cellSight automates the creation of publication-ready visual representations in the
120 form of violin plots, feature plots, and dimensional reduction embeddings, thereby greatly
121 speeding up the process of cell type annotation. Although the pipeline does not automatically
122  apply cell type labels, it produces standardized expression matrices and interactive
123  visualizations that enhance the efficiency of expert annotation. Through these automated
124  visualizations, we observed that fibroblast populations expressed Pdgfra, Col1a1, and Dcn®'"-
125 33 while immune populations were demarcated by markers including Adgre? (macrophages)
126  and Ly6c2 (monocytes) cell types3+-%. This automation-assisted strategy retains the important
127  role of expert biological knowledge in the identification of cell types while reducing annotation
128 times from days to hours. Figure 2A illustrates how cellSight automatically renders extensive
129  visualizations of quality control metrics without manual formatting, while (Fig. 2B) depicts
130  successful multi-sample integration through dimensional reduction visualization—an effort that
131  would otherwise entail extensive coding proficiency. Subsequently, cellSight's differential
132  expression module automatically performs statistically rigorous comparisons between
133  experimental conditions using the Tweedie model, specifically designed to handle the zero-
134 inflation properties inherent in single-cell data. By automating such intricate analytical
135 processes—from preprocessing and normalization to visualization and statistical evaluation—
136  cellSight removes many of the error-prone, time-consuming manual steps commonly involved
137 in single-cell workflows. This end-to-end automation makes cutting-edge transcriptomic
138 analysis accessible to researchers lacking specialized computational training, thereby
139 democratizing access to the insights of single-cell biology within the biomedical research
140 community.

141  After the naming of each cluster was completed, differential expression(D.E.) analysis was
142  performed on the 4 samples to find out the genes that have changed in their expression after
143  injury using the Tweedie model. We found several cytokines and growth factors expressed by
144  Kkeratinocytes and monocytes alongside the fibroblast clusters. In addition, we also found some
145  cytokines and growth factors that were uniquely expressed by the fibroblast clusters only. The
146  results clearly show the importance of Ccl in injury since Ccl(Ccl2) is employed to recruit
147  monocytes and macrophages to the wounded area, facilitating healing. Cell-cell interaction
148 network analysis (Fig. 2C) identified activated signaling pathways between keratinocytes,
149 immune cells, and fibroblasts during wound response. The results highlight the potential
150 importance of Ccl in injury, with our analysis showing elevated Ccl2 expression, which is
151  known to be involved in recruiting monocytes and macrophages to wounded areas®"8. Cell-
152  cell interaction network analysis (Fig. 2C) predicted activated signaling pathways between
153  keratinocytes, immune cells, and fibroblasts during wound response. Our analysis suggests
154  thatincreased Ccl2 expression could facilitate monocyte/macrophage recruitment®, while pro-
155 inflammatory cytokines (/IL-1, IL-6, IL-8) may initiate immune response and pathogen
156  clearance®®*!. Based on known pathway functions, the observed IL-4/IL-13 expression
157  patterns are predicted to promote fibroblast proliferation and collagen synthesis*?, with IL-8
158  potentially stimulating endothelial cell migration and angiogenesis*.
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160 Figure 2. Comprehensive computational analysis of injury-induced transcriptional changes in mouse skin
161 tissue. (A) Quality control metrics assessment, including gene detection rates, RNA molecule quantification, and
162  mitochondrial content analysis. (B) Multi-sample integration validation through dimensional reduction visualization.
163 (C) Cell-cell interaction network analysis highlights the activated communication pathways between keratinocytes,
164  immune cells, and fibroblasts during wound response.

165 ROLE OF FIBROBLASTS IN SKIN AGING

166  Historically, knowledge about skin cell components has been largely derived from mouse
167  studies, utilizing reporter constructs, lineage tracing, fluorescence-activated cell sorting
168 (FACS), and immunohistochemistry (IHC). These studies identified distinct fibroblast subtypes
169 in different dermal layers, suggesting functional diversity. However, to bolster our
170  understanding of the mechanism in skin tissue, scRNA-seq data were utilized to capture the
171 underlying workings.

172 In this study %, the researchers conducted a comprehensive analysis of human dermal
173  fibroblasts at the single-cell level, focusing on a defined, sun-protected area from both young
174 (25 and 27 years old) and old (53-70 years old) male Caucasian donors. By analyzing over
175 15,000 cells, the researchers identified four main fibroblast subpopulations with distinct spatial
176 localizations and characteristic functional annotations.
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177  cellSight automated quality control module generates comprehensive multi-parameter metrics
178  visualizations (Fig. 3A) with validated data quality across young (25-27 years) and old (53-70
179  years) male Caucasian donors without manual parameter tuning. The integration analysis
180  module of the pipeline performs automated batch effect correction and provides dimensionality
181 reduction plots showing effective data harmonization (Fig. 3B). With its adaptive clustering
182  algorithms, cellSight computes unsupervised clustering visualizations at multiple resolutions
183 (Fig. 3C), thereby allowing researchers to effortlessly discern discrete cell populations across
184 all donors without necessitating sophisticated computational skills. The automatically
185 generated high-quality visualizations illustrate how cellSight accelerates the analytical
186  process, allowing researchers to devote more time to biological interpretations and less to
187  computational ones.

188  The study provided insights into the differential 'priming' of fibroblasts, resulting in functionally
189  heterogeneous subgroups. cellSight's built-in visualization modules automatically produced
190 high-resolution UMAPSs, feature plots, and violin plots that reveal this cellular heterogeneity,
191 allowing researchers to identify the age-associated loss of identity among fibroblast
192  subpopulations without any manual parameter optimization. The pipeline also creates
193  standardized differential expression heatmaps that graphically display the decrease in unique
194  features of every subgroup, and its cell-cell interaction visualization tools can generate
195 network diagrams automatically displaying how aged fibroblast subpopulations, which express
196  specific skin aging-associated secreted proteins (SAASP), have predicted decreases in
197  interactions with other skin cell types. The figures present how cellSight converts intricate
198 single-cell datasets into easy-to-interpret visualizations that address fundamental
199 transcriptomic inquiries regarding cellular identity, state transitions, and cell-to-cell interactions
200 achieved through an automated pipeline without requiring advanced computational expertise
201 or the creation of custom scripts.

202  In our second case study, we wanted to verify the proper working of the cellSight pipeline. To
203 validate the proper working, we ran the automated pipeline on a previously published study
204  that sampled old and young skin tissue to observe the change in fibroblast priming in old
205 people. Our automated pipeline shows the same results as they obtained from their analysis.
206 In the initial analysis, we integrated cells from all five samples, resulting in a UMAP plot
207  displaying 17 clusters with distinct expression profiles. Notably, each cluster contained cells
208 from all donors. Expression profiling of canonical markers revealed molecular signatures of
209 inflammatory, secretory, and mesenchymal states across fibroblast subpopulations (Fig. 3C).
210 Initial analysis integrated cells from all five samples, yielding 17 clusters with distinct
211 expression profiles. Each cluster contained cells from all donors, with fibroblasts, marked by
212  LUM, DCN, VIM, PDGFRA, and COL1A2*+% constituted the most abundant skin cell type,
213  represented by four clusters. Analyzing each sample individually produced a similar number
214  of clusters and identified the same major cell types(Fig. 4A).
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216 Figure 3. Single-cell transcriptomic analysis of age-dependent changes in human skin fibroblasts. (A) Multi-
217 parameter quality control metrics demonstrating data quality across samples. (B) Sample integration analysis
218 showing batch effect correction and data harmonization. (C) Unsupervised clustering analysis at varying resolutions
219  reveals distinct cell populations.

220  Intercellular communication network analysis (Fig. 4C) revealed age-associated changes in
221 cell-type-specific signaling patterns. Key findings included differential 'priming' of fibroblasts
222 into functionally distinct subgroups and age-related loss of identity across all fibroblast
223  subpopulations (Fig. 4B). Notably, older fibroblast subpopulations expressed specific skin
224  aging-associated secreted proteins (SAASP) and showed decreased interactions with other
225  skin cell types.

226 Individual sample analysis produced consistent clustering patterns and cell type identification,
227  validating the robustness of our analytical approach. This comprehensive characterization
228 provides insights into age-related changes in fibroblast function and intercellular
229  communication networks.
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231 Figure 4. Expression analysis of human skin fibroblasts during aging. (A) Cell type identification revealed

232 diverse populations in the skin tissue, including multiple fibroblast subtypes, epithelial cells, immune cells, and
233 vascular components. (B) Expression profiling of canonical markers across identified fibroblast subpopulations
234 demonstrates molecular signatures of inflammatory, secretory, and mesenchymal states. (C) Intercellular
235 communication network analysis reveals age-associated changes in cell-type specific signaling patterns.

236  As shown in the step-by-step timeline (Fig. 5), cellSight condenses ten years of analytic
237  software development (2015-2024) that integrates approaches from early platforms like
238  Seurat to the latest methods in spatial transcriptomics and intercellular communication. The
239  end-to-end pipeline addresses the main bottlenecks in single-cell analysis through automated
240 quality control, normalization, dimensionality reduction, clustering, and biological
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interpretation. cellSight is unique in that it integrates Tweedieverse for differential expression
analysis and CellChat for intercellular communication networks— benchmarked with fibroblast
heterogeneity characterization in wound healing and aging models. The pipeline overcomes
key analytical hurdles such as batch effect correction, parameter optimization, and cell type
annotation without compromising statistical stringency and biological relevance. By reducing
computational skill demands at the cost of analysis trade-offs, cellSight provides workflow
standardization for use across varied tissue sources and experimental setups. With a scalable
design tuned for managing datasets ranging from thousands to millions of cells, cellSight
facilitates reproducibility and enables advanced single-cell analytics for the wider research
community.
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Figure 5. Timeline of single-cell analytical framework development (2015-2024). A comprehensive overview
of key computational tools that have shaped single-cell and spatial transcriptomics analysis over the past decade.
The timeline illustrates the progression from foundational platforms (blue boxes, top row) like Seurat1 (2015) to
specialized spatial transcriptomics tools (gray boxes, bottom row) marked with asterisks. Color-coded text indicates
tools focused on specific analytical domains: black for general analysis platforms, blue for single-cell tools, brown
for spatial transcriptomics, yellow for integration methods, red for intercellular communication, and gray for ligand-
receptor interaction analysis. The evolution demonstrates the field's trajectory from basic dimensionality reduction
and clustering approaches toward sophisticated integrated frameworks culminating in advanced communication
network analysis.

DISCUSSION

The cellSight platform is an important development in single-cell RNA sequencing analysis
that provides investigators with an extensible and automated pipeline incorporating a wide
range of analytical methods into one platform, as demonstrated in Figure 6. The pipeline
initiates with stringent quality control and preprocessing procedures prior to creating insightful
violin plots (Fig. 6A) that reveal the distribution of gene expression in the detected clusters.
These meticulously crafted plots simultaneously depict expression prevalence and intensity,
where the width precisely captures the proportion of cells expressing particular markers at
specific levels while the height corresponds to expression magnitude. This dual visualization
enables researchers to immediately discern cluster-specific expression patterns across
multiple cell types, revealing both subtle and pronounced differences that define cellular
identities without requiring labor-intensive manual annotation procedures.

Complementing this approach, feature plots (Fig. 6B) project expression patterns onto two-
dimensional UMAP coordinates with remarkable precision. The gradient-based color intensity
systematically highlights expression hotspots across the cellular landscape, creating intuitive
spatial maps that reveal both localized expression domains and transitional zones between
cell states. These visualizations transform complex multidimensional expression data into
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278 interpretable spatial relationships that facilitate the identification of functional territories and
279  developmental trajectories within heterogeneous tissues.

280 The UMAP visualization module (Fig. 6C) demonstrates cellSight's sophisticated
281  dimensionality reduction and clustering algorithms by depicting how transcriptionally similar
282  cells aggregate within high-dimensional space. The left panel presents a comprehensive
283  overview of the cellular ecosystem with precisely labeled populations reflecting their distinctive
284  transcriptional signatures. The right panel showcases the pipeline's re-clustering functionality,
285  which addresses a critical challenge in single-cell analysis, the detection of rare or transitional
286  cell states that often remain hidden within broader populations. This re-clustering approach
287  enables targeted analysis of specific cellular compartments (illustrated by the circled vascular
288  region) to reveal cryptic subpopulations with distinct molecular signatures. Such hierarchical
289  subpopulation discovery is particularly valuable for identifying stem cell niches, differentiation
290 intermediates, and disease-associated cell states that might represent only a fraction of the
291 broader population yet play pivotal roles in tissue function. The ability to iteratively re-cluster
292  specific regions of interest allows researchers to progressively refine cellular taxonomies,
293  uncovering biological heterogeneity at multiple resolutions that more accurately reflect the
294  complex organizational hierarchies present in living tissues. This capability proves especially
295 valuable in disease contexts where pathological cell states may emerge as subtle variants of
296 normal populations, enabling more precise identification of therapeutic targets and
297  biomarkers.

298  Aparticularly innovative component of cellSight is the integrated module for cell-cell interaction
299 analysis (Fig. 6D), generating paired heatmaps that quantitatively assess both the frequency
300 and strength of predicted molecular communications between distinct cellular populations.
301  These comprehensive interaction matrices, with sender populations arrayed vertically and
302 receiver populations horizontally, systematically capture the elaborate intercellular signaling
303  networks that orchestrate tissue function. The complementary metrics of interaction frequency
304 and strength provide multidimensional insights into communication dynamics, highlighting
305 predominant signaling axes and revealing potential regulatory mechanisms underlying tissue
306 homeostasis or disease progression. This systematic approach to mapping cellular crosstalk
307 uncovers critical signaling nodes and potential therapeutic targets that would remain
308 undetected through conventional gene expression analysis alone.


https://doi.org/10.1101/2025.05.16.654572
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.05.16.654572; this version posted May 22, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

@ Genes

Cluster Identity

KRT14 13]l<LLL$‘TLLL¢.L;J>LL$‘LL¢ 15 Re-clustering to
identify sub population
S100A2 14]J_+J_4_4LLT¢.LL_L¢.L.LLJ.XL+<L 10
1ﬂYLLLLLL1LL¢LL&¢LLLL¢
CCL21 14]J_L_l__;i¢x N P N g°
15 g
KRTDAP ]L+¢¢Lt¢ix¢+¢¢L¢¢i+++ So
1 MaEDC2
HLA_DRA WJ_¢.L$J‘_L$.LL4.J.J.T$+_L* : ﬁéﬁ%‘f’f
SELE L ]l¢¢LLl Ltilii*$tL*+L -5
COL1A1 - ]lALLL_J.J..L‘&?$U$4‘L.LLLA
12“‘ = I b Ee | 1.1181 ll‘_._ _10 T T T
12 -10 -5 0 UMAPZS 10 15 10 11 12
COL1A2 ] A $¢l¢¢¢?<@$+b+¢¢¢- . UMAP2
4 6 8 10 12 14 16 18 Number of Interactions Interaction Strength
® ol gL L[] (YT [
et L] i II i
157  KRI14 15 S100A2 Sec-Pap e . N Sec-Pap . ‘ ._
«10 & ~10 rs Mac/DCTH I K — Mac/DC1 .
a5 a S VascEC1 o VascEC1 (=
<o So Kerat_diff1 ol Kerat_diff1 Sm3
g -5 5-5 0 § Kera%_dlffZ - Kerattgéflfg g I2
-10 -1 I - Procing r N Pro-Inf c
-0 0 10 10 0 10 5 @ Kerat_diff3 ™ Kerat_diff3fi -] B
UMAP 1 UMAP 1 U) Pericytes1 ©  mm Pericytes1_ 3
0 SRR Wi SR . e O
| — =
15 IL8 15] KR—I;PAP Entsr§ Entro =
N10 10] 1 Mac/DC2 Mac/DC2
a 5 2 5 Pericytes2 'm H Pericytes2
<0 ¥ = 0} LymphEC B LymphEC [
= s | Mac/DC3 = Mac/DC3 o
R >l S ErEesrerraenunn B8 S ErEesrorrResoon B8
-104 -101 mSSE:_:é’EEE) §m3=0 m_|_‘|:_,8 - © Sagggggggw: 13 m£8 -
et T O, ™ 5380076355 "3sEg—Receiver—§ 3808055 T oaEs
309 UMAP 1 ©3>g5 §& 3833 ©2>35 g& 3333
310 Figure 6. Multi-dimensional analysis of cellular heterogeneity and intercellular interactions within tissue
311 microenvironment. (A) Violin plots showing marker gene expression distributions across cell clusters. (B) Feature
312 plots mapping marker expression (blue intensity) on UMAP coordinates. (C) UMAP visualizations of cell clustering
313 - left panel shows major cell populations, right panel shows five subclusters (0-4) within a specific region. This
314 hierarchical approach is essential for identifying rare cell states, differentiation intermediates, and disease-
315 associated variants that play critical functional roles despite representing small fractions of the tissue. (D) Cell-cell
316 interaction analysis through paired heatmaps quantifying communication frequency (left) and strength (right)
317 between sender (y-axis) and receiver (x-axis) populations. These matrices reveal the intercellular signaling
318 networks orchestrating tissue function, highlighting key communication channels and regulatory hubs that
319 coordinate multicellular responses in development, homeostasis, and disease.
320 In the mouse injury study, the analysis of wounded and naive skin tissue samples revealed
321  significant insights into the role of fibroblasts and other cell types in wound healing. Our
322 discovery of seven distinct fibroblast subtypes (FB1-FB7) emphasizes the functional
323  heterogeneity within this population. This suggests that fibroblasts play diverse roles in
324  different stages of tissue repair, potentially contributing to processes such as extracellular
325  matrix remodeling*’, cytokine secretion*®4°, and cellular signaling® during healing.
326  Detecting differentially expressed genes between the injured and naive samples, particularly
327 those encoding cytokines and growth factors, further supports the pivotal role of fibroblasts
328 and other immune cells (monocytes and macrophages) in modulating the inflammatory
329 response. The upregulation of Ccl2 is of particular interest as it reinforces the importance of
330 chemokine-mediated recruitment of immune cells to the wound site. Similarly, the observed
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331 increase in pro-inflammatory interleukins (IL-1, IL-6, IL-8)%' aligns with their well-established
332  roles ininitiating the early phases of inflammation, immune cell recruitment, and tissue repair.
333 These findings align with current knowledge of wound healing, where an orchestrated
334 sequence of cellular communication is essential for efficient repair. ldentifying specific
335 fibroblast-expressed cytokines®® and growth factors®*%* unique to this cell population opens
336  new avenues for understanding how fibroblasts regulate their local environment and contribute
337  to effective tissue repair.

338 In the skin aging study, the focus shifted to understanding how fibroblast identity and
339 functionality change with age. By validating the cellSight pipeline on a previously published
340 dataset, we confirmed the age-related decline in the distinct characteristics of fibroblast
341  subtypes. Notably, older fibroblast populations exhibited reduced functional specialization,
342  coupled with the expression of aging-associated secreted proteins (SAASP)%%%¢, consistent
343  with the senescence-related changes in cellular communication observed in aged tissues®’.
344  The loss of fibroblast identity observed in aged donors is concerning as it suggests that
345  fibroblasts lose their ability to efficiently participate in tissue homeostasis and repair over time,
346  potentially contributing to age-related tissue dysfunction.

347  Our findings are consistent with previous studies that have linked fibroblast dysfunction with
348 impaired wound healing and tissue regeneration in older individuals. The decreased
349 interactions between fibroblasts and other skin cell types in aged samples, as predicted by the
350 cell-cell communication analysis, may explain the diminished regenerative capacity of aging
351 skin. Moreover, the presence of SAASP in old fibroblasts likely contributes to the chronic low-
352 grade inflammation associated with skin aging, further impairing tissue repair mechanisms.

353  Taken together, these two studies underscore the critical roles that fibroblasts play in both
354  wound healing and skin aging. In the context of injury, fibroblasts facilitate repair by promoting
355 immune cell recruitment, extracellular matrix deposition, and tissue remodeling. However,
356  during aging, fibroblasts progressively lose their functional identity, contributing to impaired
357 healing and increased tissue fragility. These insights have important implications for
358 developing therapeutic strategies aimed at enhancing wound healing and mitigating the
359 effects of aging on skin repair.

360 Alongside biological insights, cellSight's modular architecture is expressly configured to
361 facilitate the incorporation of novel computational methodologies. The flexible framework is
362 planned to accommodate spatial transcriptomics, improved trajectory inference, and improved
363  functionality for cell-cell communication analysis. Our open-source strategy invites
364  contributions from the research community, with researchers able to craft bespoke modules
365  while ensuring compatibility with the primary pipeline. This flexibility means that cellSight
366  improves in tandem with methodological innovation in the field, allowing researchers to access
367  state-of-the-art analysis without requiring extensive computational know-how.
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368 METHODS

369  Single-cell RNA sequencing (scRNA-seq) has transformed our ability to study cellular diversity
370 by enabling the analysis of gene expression at the individual cell level®>*. However, the
371 complexity of scRNA-seq data demands sophisticated analytical tools to derive meaningful
372 insights®®. To mitigate this challenge, cellSight integrates several key steps in single-cell
373  genomics analysis. The process began with QC and normalization®, followed by dimension
374  reduction and clustering to identify distinct cell populations'’. We conducted differential
375 expression analysis to identify gene expression changes between conditions®® and used cell-
376  cell communication analysis to investigate how different cell types interact®®. Canonical
377  correlation analysis (CCA) was applied to integrate multiple datasets??, allowing for a
378 comprehensive identification of clusters and biological states. cellSight also incorporates
379  methodologies from Seurat®, enhancing its precision and versatility.

380 DATA PREPROCESSING AND QC

381  scRNA-seq data undergoes stringent QC and preprocessing steps before analysis. Raw count
382  matrices are loaded into cellSight, where standard QC procedures are implemented. These
383  procedures include identifying and removing low-quality cells' based on criteria such as
384  mitochondrial content?®, library size®!, and unique molecular identifier (UMI) counts?'.
385  Additionally, cellSight incorporates widely accepted QC metrics like mitochondrial percentage,
386  number of detected features per cell, and total RNA molecule count per cell from the Seurat??
387  package, ensuring compatibility with established practices in single-cell analysis.

388 NORMALIZATION

389  Normalization is crucial in ensuring the comparability of expression profiles across individual
390 cells®. In cellSight, normalization is performed using the sctransform method®®, which
391  accounts for both technical noise and biological variability. In over-dispersed data, where gene
392  expression variability exceeds the expectations of basic models like the Poisson distribution®,
393 the increased variability stems from both biological differences between cells and technical
394 factors, such as dropout events and batch effects® %6, making the data more challenging to
395 model. In scRNA-seq, normalization typically involves adjusting the signal with a dropout
396 parameter to account for these complexities®”. This strategy has a major flaw of overfitting
397 since different groups of genes are being normalized by the same factor®. Sctransform uses
398 a generalized linear model to estimate each gene UMI count and then pools similar genes
399  with identical gene expression together to regularize the parameter estimate to produce error
400 models®. This process of coupling various genes into groups and then estimating the error
401 preserves the underlying biological dissimilarity by applying sctransform®, cellSight enhances
402 the accuracy of downstream analyses, enabling robust identification of differentially expressed
403 genes’®.

404 DIMENSION REDUCTION AND VISUALIZATION

405 Dimension reduction techniques are used to uncover the latent structure within single-cell
406 data. Principal Component Analysis (PCA) is a key method integrated into cellSight, which
407 maps the high-dimensional data to its principal components. The resulting components are
408 utilized to visualize the data in a reduced-dimensional space, providing insights into the
409 underlying cellular heterogeneity. A k-nearest neighbor (KNN) graph’' is then constructed
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410 based on similarities between cells in this reduced space; the edges in the graph represent
411 connections between cells that share similar gene expression profiles. The Louvain
412  algorithm’ is applied to this graph to identify clusters, representing groups of cells with similar
413  expression patterns. These clusters can then be visualized and further analyzed to discover
414  biological insights, such as identifying cell types or states. The resolution parameter controls
415 the granularity of clustering, allowing users to define broader or finer groupings of cells.

416 DIFFERENTIAL EXPRESSION ANALYSIS

417  Differential expression ">* analysis is a cornerstone of single-cell studies, enabling the
418 identification of genes that exhibit significant expression changes across different cell
419  populations. In cellSight, this analysis is facilitated by the Tweedieverse statistical framework.
420 Tweedieverse % offers a flexible and robust tool for differential expression analysis,
421  accommodating the unique characteristics of single-cell data and providing reliable results for
422 the identification of genes driving cellular diversity. Tweedieverse uses the Tweedie model”®
423  to discover differentially expressed genes. scRNA-seq is riddled with zero-inflated values,
424  where the estimated coefficients are adjusted by considering the compound Poisson model,
425  which is a part of the generalized Tweedie model.

426  While DESeq2’® has been widely adopted for differential expression analysis in RNA
427  sequencing data, single-cell RNA sequencing (scRNA-seq) presents unique analytical
428 challenges that necessitate more specialized statistical approaches '*77. Our implementation
429 of Tweedieverse *tin cellSight offers several key advantages over DESeq2, particularly in
430 handling the characteristic zero inflation of scRNA-seq data, where genes may show no
431  expression in many cells due to both technical dropouts and true biological absence 6778,
432 Unlike DESeqg2's negative binomial model, Tweedieverse implements a list of models,
433 including the normal, Poisson, negative binomial, zero-inflated negative binomial, and
434  Tweedie compound Poisson distributions that naturally accommodate excess zeros while
435 maintaining appropriate variance modeling, resulting in an improvement in sensitivity for
436  detecting differentially expressed genes. Furthermore, Tweedieverse's flexible parametric
437  framework better captures cell-to-cell heterogeneity within defined populations [9], and its
438  specialized normalization approaches are better suited for single-cell expression profiles
439 compared to DESeq2's size factor normalization®%. Importantly, Tweedieverse's
440 computational efficiency scales better with increasing cell numbers, maintaining consistent
441 performance across datasets ranging from 5,000 to 50,000 cells, while DESeq2 shows
442  substantial increases in computational overhead’”, making it particularly well-suited for
443  integration into cellSight's automated workflow.

444  CELL-CELL INTERACTION ANALYSIS

445  Understanding cellular communication is crucial for deciphering complex biological
446  processes®®8' To address this, cellSight °° incorporates the Cellchat package, allowing for the
447  analysis of cell-cell interactions based on ligand-receptor 828 pairs. cellSight provides a
448  comprehensive view of the communication network within a cellular population by integrating
449  information on ligand-receptor interactions848°.

450 VISUALIZATION AND INTERPRETATION

451  The results obtained from the aforementioned analyses are visualized using various plotting
452  techniques within the cellSight environment. These include t-distributed Stochastic Neighbor
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453  Emulation (t-SNE) and Uniform Manifold Approximation and Projection (UMAP), which offer
454  intuitive representations of cellular relationships and structures.

455 INTEGRATION WITH EXISTING TOOLS

456  cellSight seamlessly integrates with established tools such as Seurat, ensuring compatibility
457  with widely adopted workflows in the single-cell analysis community. This integration allows
458 users to leverage the strengths of both cellSight and Seurat, expanding the analytical
459  capabilities and providing a more comprehensive toolkit for researchers.

460 In summary, cellSight amalgamates state-of-the-art methods for QC, normalization, dimension
461 reduction, differential expression analysis, and cell-cell interaction analysis, offering a robust
462  and comprehensive solution for unraveling the complexities of single-cell genomics.

463  Finally, to assess the performance of cellSight, we conducted thorough evaluations on two
464 independent skin-related studies. The first dataset, derived from mouse skin tissue 24 hrs after
465  injury, focused on how the different cell type dynamics change to adapt and heal the wound.
466 The second dataset, originating from human skin, centered around the importance of
467 fibroblasts' role in skin aging. Performance metrics, including QC plots, integration plots, and
468  clustering, were calculated to validate the tool's effectiveness in accurately capturing cellular
469 heterogeneity and differential gene expression patterns within the skin-related contexts.
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470 RESOURCE AVAILABILITY
471 LEAD CONTACT

472  Further information and requests for resources and analysis should be directed to and will be
473  fulfilled by the lead contact, Ali Rahnavard (rahnavard@gwu.edu).

474 DATA AND CODE AVAILABILITY

475  All original code has been deposited at htips://zenodo.org/records/10041147 and is publicly
476  available at https://github.com/omicsEye/cellSight.

477  Any additional information required to reanalyze the data reported in this paper is available
478  from the lead contact upon request.
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