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SUMMARY 8 

Single-cell analysis has transformed our understanding of cellular diversity, offering insights 9 

into complex biological systems. Yet, manual data processing in single-cell studies poses 10 

challenges, including inefficiency, human error, and limited scalability. To address these 11 

issues, we propose the automated workflow cellSight, which integrates high-throughput 12 

sequencing in a user-friendly platform. By automating tasks like cell type clustering, feature 13 

extraction, and data normalization, cellSight reduces researcher workload, promoting focus 14 

on data interpretation and hypothesis generation. Its standardized analysis pipelines and 15 

quality control metrics enhance reproducibility, enabling collaboration across studies. 16 

Moreover, cellSight’s adaptability supports integration with emerging technologies, keeping 17 

pace with advancements in single-cell genomics. cellSight accelerates discoveries in single-18 

cell biology, driving impactful insights and clinical translation. It is available with documentation 19 

and tutorials at https://github.com/omicsEye/cellSight. 20 
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INTRODUCTION  24 

The advent of high-throughput single-cell technologies has generated unprecedented volumes 25 

of biological data, presenting significant computational challenges in processing, analyzing, 26 

and interpreting cellular heterogeneity and dynamics1–4. The field of single-cell genomics 27 

emphasizes the growing need for sophisticated computational tools5,6 capable of handling the 28 

increasing complexity of data analysis, particularly in understanding cellular heterogeneity7–9 29 

and their temporal dynamics. The computational demands are further amplified by recent 30 

technological advances in single-cell methodologies, such as droplet-based10,11 and plate-31 

based assays12,13, which can generate data from thousands to millions of individual cells in a 32 

single experiment. 33 

The computational complexity of single-cell analysis extends beyond mere data volume14,15. 34 

Current analytical pipelines must address multiple challenges, including batch effect 35 

correction, dimensionality reduction, feature selection, and cell type identification16,17. 36 

Traditional computational approaches often rely on manual quality control(QC) steps and 37 

differential expression analyses, which are computationally intensive and prone to 38 

reproducibility issues and human error18–20. These challenges are compounded by the high-39 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 22, 2025. ; https://doi.org/10.1101/2025.05.16.654572doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.16.654572
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

dimensional nature of single-cell data, where each cell is characterized by the expression 40 

levels of tens of thousands of genes21,22. 41 

To address these computational challenges, we introduce cellSight, an innovative automated 42 

computational framework specifically designed to handle the complexity and scale of single-43 

cell data analysis23,24. Our solution integrates state-of-the-art computational methods for data 44 

processing, visualization, and interpretation. Central to cellSight's architecture is its robust QC 45 

pipeline integrated with statistical modeling and differential expression analyses by 46 

considering the usual linear and generalized linear models, emphasizing the role of zero-47 

inflation in the interval data. The results are used in the pipeline to analyze intercellular 48 

communication networks during homeostasis. 49 

cellSight represents a significant advance in computational biology, providing an automated, 50 

end-to-end solution that addresses key computational bottlenecks in single-cell analysis25. 51 

The framework incorporates parallel processing capabilities and optimized algorithms for 52 

handling large-scale datasets while maintaining statistical rigor and biological relevance. By 53 

automating complex computational tasks, cellSight not only enhances the efficiency of single-54 

cell analysis but also improves reproducibility and reduces computational overhead26. 55 

To validate our computational framework, we applied cellSight to two distinct datasets: a 56 

mouse skin injury model and a previously published skin aging study27. Our automated 57 

pipeline successfully reproduced the findings from the skin aging study while generating novel 58 

insights into the role of fibroblasts during the healing process in the mouse injury model. These 59 

results demonstrate the robustness and versatility of our computational approach in handling 60 

diverse biological contexts while maintaining computational efficiency. 61 

RESULTS 62 

DYNAMICS OF CELLS IN INJURY-INDUCED SKIN INFLAMMATION 63 

An epithelium covers the outer layer of skin on all animals, protecting against damage, water 64 

loss, and infection. When the epithelial layer is damaged, the body swiftly induces a plethora 65 

of molecular and cellular changes to repair the tissue. The process of healing has been 66 

characterized as three major overlapping phases28–30. The first stage is inflammation, which is 67 

prompted as the tissue is damaged, involves the recruitment and activation of pro-68 

inflammatory immune cells. The second phase involves the creation of granular tissue and a 69 

new epithelium over the injured area. The final stage is the remodeling of the newly generated 70 

tissue, particularly the extracellular matrix. The healing process is a time-intensive process 71 

that can take months.  72 

Four distinct datasets were meticulously collected from a comprehensive study involving two 73 

groups of mice: two datasets from injured skin and two from uninjured skin. This meticulous 74 

selection of datasets aimed to unravel the intricate molecular roles and dynamics occurring 75 

during the process of injury. Each dataset represents a snapshot of the cellular landscape at 76 

a specific point in time, capturing the unique gene expression profiles and cellular responses 77 

associated with injury and contrasting them with those from uninjured samples. Including 78 

injured and uninjured samples provides a valuable comparative framework, allowing 79 

researchers to pinpoint differentially expressed genes and pathways specific to the injury 80 

context. This approach enables a thorough exploration of the molecular mechanisms 81 
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underlying the response to injury, potentially revealing critical insights into the cellular 82 

processes, signaling pathways, and dynamic changes in gene expression that contribute to 83 

tissue repair or exacerbate damage. The carefully curated datasets form the foundation for a 84 

detailed and nuanced analysis, fostering a deeper understanding of the roles played by 85 

specific genes and cellular components in the context of injury and recovery in the mouse 86 

model. 87 

 88 

Figure 1. Single-cell Analysis Pipeline for Transcriptional Profiling. (A) Single-nucleus RNA expression 89 
heatmap displaying gene expression patterns across individual cells (Cell 1, Cell 2,..., Cell N). (B) Quality control 90 
is based on principal components to distinguish viable cells from unreliable data points. (C) Dataset integration 91 
through canonical correlation analysis (CCA), merging reference and query datasets to identify common cell 92 
populations. (D) High-dimensional clustering visualization showing distinct cell type populations with annotated 93 
labels (e.g., Endothelial Cells, Fibroblasts) created in the previous step. (E) Downstream analyses featuring circular 94 
segmented plots of cell-cell interactions and the significance of the disease states visualized by box plots and 95 
heatmaps. (F) cellSight workflow: Data normalization and integration, cluster annotation, differential expression 96 
(Tweedieverse), trajectory analysis (Monocle3), pathway analysis (omePath), and cell-cell interaction mapping 97 
(CellChat).  98 

cellSight’s pipeline streamlined the complex single-cell data analysis into a straightforward 99 

and efficient process, as demonstrated in our study of skin injury response. Through 100 

automated quality control, normalization, and clustering, we successfully detected 101 

differentially expressed genes between injured and naive samples, revealing the direct 102 

influence of fibroblast subtypes on the wound healing process. The integration module 103 

enabled an overarching visualization of the differences in biological states across sample 104 

types, while cell-cell interaction analysis systematically mapped the multifaceted 105 

communication networks governing the coordinated healing response. This case study 106 

demonstrates the ability of researchers to rapidly extract biologically meaningful insights from 107 

complex single-cell data without requiring exhaustive computational expertise. 108 

To illustrate the end-to-end automation functionalities of cellSight, we ran our developed 109 

pipeline on single-cell datasets from a mouse skin injury model. The automated pipeline 110 

successfully processed four datasets consisting of 39,466 cells over 32,285 genes, thereby 111 

removing the need for manual data manipulation and format conversion, which typically 112 
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consumes much time for researchers. cellSight's quality control module automatically applied 113 

optimized filtering thresholds (RNA count >200, unique genes >2500, total RNA molecules 114 

>8000, mitochondria percentage = 0) without the need for manual parameter tuning or iterative 115 

tuning cycles. The pipeline then successfully performed canonical correlation analysis for 116 

dataset integration—a computationally demanding step that typically necessitates expert 117 

expertise—and carried out unsupervised clustering that revealed 21 cell populations. 118 

Moreover, cellSight automates the creation of publication-ready visual representations in the 119 

form of violin plots, feature plots, and dimensional reduction embeddings, thereby greatly 120 

speeding up the process of cell type annotation. Although the pipeline does not automatically 121 

apply cell type labels, it produces standardized expression matrices and interactive 122 

visualizations that enhance the efficiency of expert annotation. Through these automated 123 

visualizations, we observed that fibroblast populations expressed Pdgfrα, Col1a1, and Dcn31–124 
33, while immune populations were demarcated by markers including Adgre1 (macrophages) 125 

and Ly6c2 (monocytes) cell types34–36. This automation-assisted strategy retains the important 126 

role of expert biological knowledge in the identification of cell types while reducing annotation 127 

times from days to hours. Figure 2A illustrates how cellSight automatically renders extensive 128 

visualizations of quality control metrics without manual formatting, while (Fig. 2B) depicts 129 

successful multi-sample integration through dimensional reduction visualization—an effort that 130 

would otherwise entail extensive coding proficiency. Subsequently, cellSight's differential 131 

expression module automatically performs statistically rigorous comparisons between 132 

experimental conditions using the Tweedie model, specifically designed to handle the zero-133 

inflation properties inherent in single-cell data. By automating such intricate analytical 134 

processes—from preprocessing and normalization to visualization and statistical evaluation—135 

cellSight removes many of the error-prone, time-consuming manual steps commonly involved 136 

in single-cell workflows. This end-to-end automation makes cutting-edge transcriptomic 137 

analysis accessible to researchers lacking specialized computational training, thereby 138 

democratizing access to the insights of single-cell biology within the biomedical research 139 

community.  140 

After the naming of each cluster was completed, differential expression(D.E.) analysis was 141 

performed on the 4 samples to find out the genes that have changed in their expression after 142 

injury using the Tweedie model. We found several cytokines and growth factors expressed by 143 

keratinocytes and monocytes alongside the fibroblast clusters. In addition, we also found some 144 

cytokines and growth factors that were uniquely expressed by the fibroblast clusters only. The 145 

results clearly show the importance of Ccl in injury since Ccl(Ccl2) is employed to recruit 146 

monocytes and macrophages to the wounded area, facilitating healing. Cell-cell interaction 147 

network analysis (Fig. 2C) identified activated signaling pathways between keratinocytes, 148 

immune cells, and fibroblasts during wound response. The results highlight the potential 149 

importance of Ccl in injury, with our analysis showing elevated Ccl2 expression, which is 150 

known to be involved in recruiting monocytes and macrophages to wounded areas37,38. Cell-151 

cell interaction network analysis (Fig. 2C) predicted activated signaling pathways between 152 

keratinocytes, immune cells, and fibroblasts during wound response. Our analysis suggests 153 

that increased Ccl2 expression could facilitate monocyte/macrophage recruitment39, while pro-154 

inflammatory cytokines (IL-1, IL-6, IL-8) may initiate immune response and pathogen 155 

clearance40,41. Based on known pathway functions, the observed IL-4/IL-13 expression 156 

patterns are predicted to promote fibroblast proliferation and collagen synthesis42, with IL-8 157 

potentially stimulating endothelial cell migration and angiogenesis43. 158 
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 159 

Figure 2. Comprehensive computational analysis of injury-induced transcriptional changes in mouse skin 160 
tissue. (A) Quality control metrics assessment, including gene detection rates, RNA molecule quantification, and 161 
mitochondrial content analysis. (B) Multi-sample integration validation through dimensional reduction visualization. 162 
(C) Cell-cell interaction network analysis highlights the activated communication pathways between keratinocytes, 163 
immune cells, and fibroblasts during wound response. 164 

ROLE OF FIBROBLASTS IN SKIN AGING 165 

Historically, knowledge about skin cell components has been largely derived from mouse 166 

studies, utilizing reporter constructs, lineage tracing, fluorescence-activated cell sorting 167 

(FACS), and immunohistochemistry (IHC). These studies identified distinct fibroblast subtypes 168 

in different dermal layers, suggesting functional diversity. However, to bolster our 169 

understanding of the mechanism in skin tissue, scRNA-seq data were utilized to capture the 170 

underlying workings.  171 

In this study 27, the researchers conducted a comprehensive analysis of human dermal 172 

fibroblasts at the single-cell level, focusing on a defined, sun-protected area from both young 173 

(25 and 27 years old) and old (53–70 years old) male Caucasian donors. By analyzing over 174 

15,000 cells, the researchers identified four main fibroblast subpopulations with distinct spatial 175 

localizations and characteristic functional annotations.  176 
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cellSight automated quality control module generates comprehensive multi-parameter metrics 177 

visualizations (Fig. 3A) with validated data quality across young (25-27 years) and old (53-70 178 

years) male Caucasian donors without manual parameter tuning. The integration analysis 179 

module of the pipeline performs automated batch effect correction and provides dimensionality 180 

reduction plots showing effective data harmonization (Fig. 3B). With its adaptive clustering 181 

algorithms, cellSight computes unsupervised clustering visualizations at multiple resolutions 182 

(Fig. 3C), thereby allowing researchers to effortlessly discern discrete cell populations across 183 

all donors without necessitating sophisticated computational skills. The automatically 184 

generated high-quality visualizations illustrate how cellSight accelerates the analytical 185 

process, allowing researchers to devote more time to biological interpretations and less to 186 

computational ones. 187 

The study provided insights into the differential 'priming' of fibroblasts, resulting in functionally 188 

heterogeneous subgroups. cellSight's built-in visualization modules automatically produced 189 

high-resolution UMAPs, feature plots, and violin plots that reveal this cellular heterogeneity, 190 

allowing researchers to identify the age-associated loss of identity among fibroblast 191 

subpopulations without any manual parameter optimization. The pipeline also creates 192 

standardized differential expression heatmaps that graphically display the decrease in unique 193 

features of every subgroup, and its cell-cell interaction visualization tools can generate 194 

network diagrams automatically displaying how aged fibroblast subpopulations, which express 195 

specific skin aging-associated secreted proteins (SAASP), have predicted decreases in 196 

interactions with other skin cell types. The figures present how cellSight converts intricate 197 

single-cell datasets into easy-to-interpret visualizations that address fundamental 198 

transcriptomic inquiries regarding cellular identity, state transitions, and cell-to-cell interactions 199 

achieved through an automated pipeline without requiring advanced computational expertise 200 

or the creation of custom scripts. 201 

In our second case study, we wanted to verify the proper working of the cellSight pipeline. To 202 

validate the proper working, we ran the automated pipeline on a previously published study 203 

that sampled old and young skin tissue to observe the change in fibroblast priming in old 204 

people. Our automated pipeline shows the same results as they obtained from their analysis. 205 

In the initial analysis, we integrated cells from all five samples, resulting in a UMAP plot 206 

displaying 17 clusters with distinct expression profiles. Notably, each cluster contained cells 207 

from all donors. Expression profiling of canonical markers revealed molecular signatures of 208 

inflammatory, secretory, and mesenchymal states across fibroblast subpopulations (Fig. 3C). 209 

Initial analysis integrated cells from all five samples, yielding 17 clusters with distinct 210 

expression profiles. Each cluster contained cells from all donors, with fibroblasts, marked by 211 

LUM, DCN, VIM, PDGFRA, and COL1A244–46, constituted the most abundant skin cell type, 212 

represented by four clusters. Analyzing each sample individually produced a similar number 213 

of clusters and identified the same major cell types(Fig. 4A).  214 
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Figure 3. Single-cell transcriptomic analysis of age-dependent changes in human skin fibroblasts. (A) Multi-216 
parameter quality control metrics demonstrating data quality across samples. (B) Sample integration analysis 217 
showing batch effect correction and data harmonization. (C) Unsupervised clustering analysis at varying resolutions 218 
reveals distinct cell populations. 219 

Intercellular communication network analysis (Fig. 4C) revealed age-associated changes in 220 

cell-type-specific signaling patterns. Key findings included differential 'priming' of fibroblasts 221 

into functionally distinct subgroups and age-related loss of identity across all fibroblast 222 

subpopulations (Fig. 4B). Notably, older fibroblast subpopulations expressed specific skin 223 

aging-associated secreted proteins (SAASP) and showed decreased interactions with other 224 

skin cell types. 225 

Individual sample analysis produced consistent clustering patterns and cell type identification, 226 

validating the robustness of our analytical approach. This comprehensive characterization 227 

provides insights into age-related changes in fibroblast function and intercellular 228 

communication networks. 229 

 230 

Figure 4. Expression analysis of human skin fibroblasts during aging. (A) Cell type identification revealed 231 
diverse populations in the skin tissue, including multiple fibroblast subtypes, epithelial cells, immune cells, and 232 
vascular components. (B) Expression profiling of canonical markers across identified fibroblast subpopulations 233 
demonstrates molecular signatures of inflammatory, secretory, and mesenchymal states. (C) Intercellular 234 
communication network analysis reveals age-associated changes in cell-type specific signaling patterns. 235 

As shown in the step-by-step timeline (Fig. 5), cellSight condenses ten years of analytic 236 

software development (2015-2024) that integrates approaches from early platforms like 237 

Seurat to the latest methods in spatial transcriptomics and intercellular communication. The 238 

end-to-end pipeline addresses the main bottlenecks in single-cell analysis through automated 239 

quality control, normalization, dimensionality reduction, clustering, and biological 240 
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interpretation. cellSight is unique in that it integrates Tweedieverse for differential expression 241 

analysis and CellChat for intercellular communication networks— benchmarked with fibroblast 242 

heterogeneity characterization in wound healing and aging models. The pipeline overcomes 243 

key analytical hurdles such as batch effect correction, parameter optimization, and cell type 244 

annotation without compromising statistical stringency and biological relevance. By reducing 245 

computational skill demands at the cost of analysis trade-offs, cellSight provides workflow 246 

standardization for use across varied tissue sources and experimental setups. With a scalable 247 

design tuned for managing datasets ranging from thousands to millions of cells, cellSight 248 

facilitates reproducibility and enables advanced single-cell analytics for the wider research 249 

community. 250 

 251 

Figure 5. Timeline of single-cell analytical framework development (2015-2024). A comprehensive overview 252 
of key computational tools that have shaped single-cell and spatial transcriptomics analysis over the past decade. 253 
The timeline illustrates the progression from foundational platforms (blue boxes, top row) like Seurat1 (2015) to 254 
specialized spatial transcriptomics tools (gray boxes, bottom row) marked with asterisks. Color-coded text indicates 255 
tools focused on specific analytical domains: black for general analysis platforms, blue for single-cell tools, brown 256 
for spatial transcriptomics, yellow for integration methods, red for intercellular communication, and gray for ligand-257 
receptor interaction analysis. The evolution demonstrates the field's trajectory from basic dimensionality reduction 258 
and clustering approaches toward sophisticated integrated frameworks culminating in advanced communication 259 
network analysis. 260 

DISCUSSION 261 

The cellSight platform is an important development in single-cell RNA sequencing analysis 262 

that provides investigators with an extensible and automated pipeline incorporating a wide 263 

range of analytical methods into one platform, as demonstrated in Figure 6. The pipeline 264 

initiates with stringent quality control and preprocessing procedures prior to creating insightful 265 

violin plots (Fig. 6A) that reveal the distribution of gene expression in the detected clusters. 266 

These meticulously crafted plots simultaneously depict expression prevalence and intensity, 267 

where the width precisely captures the proportion of cells expressing particular markers at 268 

specific levels while the height corresponds to expression magnitude. This dual visualization 269 

enables researchers to immediately discern cluster-specific expression patterns across 270 

multiple cell types, revealing both subtle and pronounced differences that define cellular 271 

identities without requiring labor-intensive manual annotation procedures. 272 

Complementing this approach, feature plots (Fig. 6B) project expression patterns onto two-273 

dimensional UMAP coordinates with remarkable precision. The gradient-based color intensity 274 

systematically highlights expression hotspots across the cellular landscape, creating intuitive 275 

spatial maps that reveal both localized expression domains and transitional zones between 276 

cell states. These visualizations transform complex multidimensional expression data into 277 
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interpretable spatial relationships that facilitate the identification of functional territories and 278 

developmental trajectories within heterogeneous tissues. 279 

The UMAP visualization module (Fig. 6C) demonstrates cellSight's sophisticated 280 

dimensionality reduction and clustering algorithms by depicting how transcriptionally similar 281 

cells aggregate within high-dimensional space. The left panel presents a comprehensive 282 

overview of the cellular ecosystem with precisely labeled populations reflecting their distinctive 283 

transcriptional signatures. The right panel showcases the pipeline's re-clustering functionality, 284 

which addresses a critical challenge in single-cell analysis, the detection of rare or transitional 285 

cell states that often remain hidden within broader populations. This re-clustering approach 286 

enables targeted analysis of specific cellular compartments (illustrated by the circled vascular 287 

region) to reveal cryptic subpopulations with distinct molecular signatures. Such hierarchical 288 

subpopulation discovery is particularly valuable for identifying stem cell niches, differentiation 289 

intermediates, and disease-associated cell states that might represent only a fraction of the 290 

broader population yet play pivotal roles in tissue function. The ability to iteratively re-cluster 291 

specific regions of interest allows researchers to progressively refine cellular taxonomies, 292 

uncovering biological heterogeneity at multiple resolutions that more accurately reflect the 293 

complex organizational hierarchies present in living tissues. This capability proves especially 294 

valuable in disease contexts where pathological cell states may emerge as subtle variants of 295 

normal populations, enabling more precise identification of therapeutic targets and 296 

biomarkers. 297 

A particularly innovative component of cellSight is the integrated module for cell-cell interaction 298 

analysis (Fig. 6D), generating paired heatmaps that quantitatively assess both the frequency 299 

and strength of predicted molecular communications between distinct cellular populations. 300 

These comprehensive interaction matrices, with sender populations arrayed vertically and 301 

receiver populations horizontally, systematically capture the elaborate intercellular signaling 302 

networks that orchestrate tissue function. The complementary metrics of interaction frequency 303 

and strength provide multidimensional insights into communication dynamics, highlighting 304 

predominant signaling axes and revealing potential regulatory mechanisms underlying tissue 305 

homeostasis or disease progression. This systematic approach to mapping cellular crosstalk 306 

uncovers critical signaling nodes and potential therapeutic targets that would remain 307 

undetected through conventional gene expression analysis alone. 308 
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 309 

Figure 6. Multi-dimensional analysis of cellular heterogeneity and intercellular interactions within tissue 310 
microenvironment. (A) Violin plots showing marker gene expression distributions across cell clusters. (B) Feature 311 
plots mapping marker expression (blue intensity) on UMAP coordinates. (C) UMAP visualizations of cell clustering 312 
- left panel shows major cell populations, right panel shows five subclusters (0-4) within a specific region. This 313 
hierarchical approach is essential for identifying rare cell states, differentiation intermediates, and disease-314 
associated variants that play critical functional roles despite representing small fractions of the tissue. (D) Cell-cell 315 
interaction analysis through paired heatmaps quantifying communication frequency (left) and strength (right) 316 
between sender (y-axis) and receiver (x-axis) populations. These matrices reveal the intercellular signaling 317 
networks orchestrating tissue function, highlighting key communication channels and regulatory hubs that 318 
coordinate multicellular responses in development, homeostasis, and disease.  319 

In the mouse injury study, the analysis of wounded and naive skin tissue samples revealed 320 

significant insights into the role of fibroblasts and other cell types in wound healing. Our 321 

discovery of seven distinct fibroblast subtypes (FB1-FB7) emphasizes the functional 322 

heterogeneity within this population. This suggests that fibroblasts play diverse roles in 323 

different stages of tissue repair, potentially contributing to processes such as extracellular 324 

matrix remodeling47, cytokine secretion48,49, and cellular signaling50 during healing.  325 

Detecting differentially expressed genes between the injured and naive samples, particularly 326 

those encoding cytokines and growth factors, further supports the pivotal role of fibroblasts 327 

and other immune cells (monocytes and macrophages) in modulating the inflammatory 328 

response. The upregulation of Ccl2 is of particular interest as it reinforces the importance of 329 

chemokine-mediated recruitment of immune cells to the wound site. Similarly, the observed 330 
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increase in pro-inflammatory interleukins (IL-1, IL-6, IL-8)51 aligns with their well-established 331 

roles in initiating the early phases of inflammation, immune cell recruitment, and tissue repair. 332 

These findings align with current knowledge of wound healing, where an orchestrated 333 

sequence of cellular communication is essential for efficient repair. Identifying specific 334 

fibroblast-expressed cytokines52 and growth factors53,54 unique to this cell population opens 335 

new avenues for understanding how fibroblasts regulate their local environment and contribute 336 

to effective tissue repair. 337 

In the skin aging study, the focus shifted to understanding how fibroblast identity and 338 

functionality change with age. By validating the cellSight pipeline on a previously published 339 

dataset, we confirmed the age-related decline in the distinct characteristics of fibroblast 340 

subtypes. Notably, older fibroblast populations exhibited reduced functional specialization, 341 

coupled with the expression of aging-associated secreted proteins (SAASP)55,56, consistent 342 

with the senescence-related changes in cellular communication observed in aged tissues57. 343 

The loss of fibroblast identity observed in aged donors is concerning as it suggests that 344 

fibroblasts lose their ability to efficiently participate in tissue homeostasis and repair over time, 345 

potentially contributing to age-related tissue dysfunction. 346 

Our findings are consistent with previous studies that have linked fibroblast dysfunction with 347 

impaired wound healing and tissue regeneration in older individuals. The decreased 348 

interactions between fibroblasts and other skin cell types in aged samples, as predicted by the 349 

cell-cell communication analysis, may explain the diminished regenerative capacity of aging 350 

skin. Moreover, the presence of SAASP in old fibroblasts likely contributes to the chronic low-351 

grade inflammation associated with skin aging, further impairing tissue repair mechanisms. 352 

Taken together, these two studies underscore the critical roles that fibroblasts play in both 353 

wound healing and skin aging. In the context of injury, fibroblasts facilitate repair by promoting 354 

immune cell recruitment, extracellular matrix deposition, and tissue remodeling. However, 355 

during aging, fibroblasts progressively lose their functional identity, contributing to impaired 356 

healing and increased tissue fragility. These insights have important implications for 357 

developing therapeutic strategies aimed at enhancing wound healing and mitigating the 358 

effects of aging on skin repair. 359 

Alongside biological insights, cellSight's modular architecture is expressly configured to 360 

facilitate the incorporation of novel computational methodologies. The flexible framework is 361 

planned to accommodate spatial transcriptomics, improved trajectory inference, and improved 362 

functionality for cell-cell communication analysis. Our open-source strategy invites 363 

contributions from the research community, with researchers able to craft bespoke modules 364 

while ensuring compatibility with the primary pipeline. This flexibility means that cellSight 365 

improves in tandem with methodological innovation in the field, allowing researchers to access 366 

state-of-the-art analysis without requiring extensive computational know-how.  367 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 22, 2025. ; https://doi.org/10.1101/2025.05.16.654572doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.16.654572
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

METHODS 368 

Single-cell RNA sequencing (scRNA-seq) has transformed our ability to study cellular diversity 369 

by enabling the analysis of gene expression at the individual cell level3,4. However, the 370 

complexity of scRNA-seq data demands sophisticated analytical tools to derive meaningful 371 

insights5,6. To mitigate this challenge, cellSight integrates several key steps in single-cell 372 

genomics analysis. The process began with QC and normalization19, followed by dimension 373 

reduction and clustering to identify distinct cell populations17. We conducted differential 374 

expression analysis to identify gene expression changes between conditions58 and used cell-375 

cell communication analysis to investigate how different cell types interact59. Canonical 376 

correlation analysis (CCA) was applied to integrate multiple datasets22, allowing for a 377 

comprehensive identification of clusters and biological states. cellSight also incorporates 378 

methodologies from Seurat60, enhancing its precision and versatility. 379 

DATA PREPROCESSING AND QC 380 

scRNA-seq data undergoes stringent QC and preprocessing steps before analysis. Raw count 381 

matrices are loaded into cellSight, where standard QC procedures are implemented. These 382 

procedures include identifying and removing low-quality cells19 based on criteria such as 383 

mitochondrial content20, library size61, and unique molecular identifier (UMI) counts21. 384 

Additionally, cellSight incorporates widely accepted QC metrics like mitochondrial percentage, 385 

number of detected features per cell, and total RNA molecule count per cell from the Seurat22 386 

package, ensuring compatibility with established practices in single-cell analysis. 387 

NORMALIZATION 388 

Normalization is crucial in ensuring the comparability of expression profiles across individual 389 

cells62. In cellSight, normalization is performed using the sctransform method63, which 390 

accounts for both technical noise and biological variability. In over-dispersed data, where gene 391 

expression variability exceeds the expectations of basic models like the Poisson distribution64, 392 

the increased variability stems from both biological differences between cells and technical 393 

factors, such as dropout events and batch effects65,66, making the data more challenging to 394 

model. In scRNA-seq, normalization typically involves adjusting the signal with a dropout 395 

parameter to account for these complexities67. This strategy has a major flaw of overfitting 396 

since different groups of genes are being normalized by the same factor68. Sctransform uses 397 

a generalized linear model to estimate each gene UMI count and then pools similar genes 398 

with identical gene expression together to regularize the parameter estimate to produce error 399 

models69. This process of coupling various genes into groups and then estimating the error 400 

preserves the underlying biological dissimilarity by applying sctransform63, cellSight enhances 401 

the accuracy of downstream analyses, enabling robust identification of differentially expressed 402 

genes70. 403 

DIMENSION REDUCTION AND VISUALIZATION 404 

Dimension reduction techniques are used to uncover the latent structure within single-cell 405 

data. Principal Component Analysis (PCA) is a key method integrated into cellSight, which 406 

maps the high-dimensional data to its principal components. The resulting components are 407 

utilized to visualize the data in a reduced-dimensional space, providing insights into the 408 

underlying cellular heterogeneity. A k-nearest neighbor (KNN) graph71 is then constructed 409 
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based on similarities between cells in this reduced space; the edges in the graph represent 410 

connections between cells that share similar gene expression profiles. The Louvain 411 

algorithm72 is applied to this graph to identify clusters, representing groups of cells with similar 412 

expression patterns. These clusters can then be visualized and further analyzed to discover 413 

biological insights, such as identifying cell types or states. The resolution parameter controls 414 

the granularity of clustering, allowing users to define broader or finer groupings of cells. 415 

DIFFERENTIAL EXPRESSION ANALYSIS 416 

Differential expression 73,74 analysis is a cornerstone of single-cell studies, enabling the 417 

identification of genes that exhibit significant expression changes across different cell 418 

populations. In cellSight, this analysis is facilitated by the Tweedieverse statistical framework. 419 

Tweedieverse 58 offers a flexible and robust tool for differential expression analysis, 420 

accommodating the unique characteristics of single-cell data and providing reliable results for 421 

the identification of genes driving cellular diversity. Tweedieverse uses the Tweedie model75 422 

to discover differentially expressed genes. scRNA-seq is riddled with zero-inflated values, 423 

where the estimated coefficients are adjusted by considering the compound Poisson model, 424 

which is a part of the generalized Tweedie model.  425 

While DESeq276 has been widely adopted for differential expression analysis in RNA 426 

sequencing data, single-cell RNA sequencing (scRNA-seq) presents unique analytical 427 

challenges that necessitate more specialized statistical approaches 13,77. Our implementation 428 

of Tweedieverse 58in cellSight offers several key advantages over DESeq2, particularly in 429 

handling the characteristic zero inflation of scRNA-seq data, where genes may show no 430 

expression in many cells due to both technical dropouts and true biological absence 67,78. 431 

Unlike DESeq2's negative binomial model, Tweedieverse implements a list of models, 432 

including the normal, Poisson, negative binomial, zero-inflated negative binomial, and 433 

Tweedie compound Poisson distributions that naturally accommodate excess zeros while 434 

maintaining appropriate variance modeling, resulting in an improvement in sensitivity for 435 

detecting differentially expressed genes. Furthermore, Tweedieverse's flexible parametric 436 

framework better captures cell-to-cell heterogeneity within defined populations [9], and its 437 

specialized normalization approaches are better suited for single-cell expression profiles 438 

compared to DESeq2's size factor normalization63,66. Importantly, Tweedieverse's 439 

computational efficiency scales better with increasing cell numbers, maintaining consistent 440 

performance across datasets ranging from 5,000 to 50,000 cells, while DESeq2 shows 441 

substantial increases in computational overhead79, making it particularly well-suited for 442 

integration into cellSight's automated workflow. 443 

CELL-CELL INTERACTION ANALYSIS 444 

Understanding cellular communication is crucial for deciphering complex biological 445 

processes80,81. To address this, cellSight 59 incorporates the Cellchat package, allowing for the 446 

analysis of cell-cell interactions based on ligand-receptor 82,83 pairs. cellSight provides a 447 

comprehensive view of the communication network within a cellular population by integrating 448 

information on ligand-receptor interactions84,85. 449 

VISUALIZATION AND INTERPRETATION 450 

The results obtained from the aforementioned analyses are visualized using various plotting 451 

techniques within the cellSight environment. These include t-distributed Stochastic Neighbor 452 
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Emulation (t-SNE) and Uniform Manifold Approximation and Projection (UMAP), which offer 453 

intuitive representations of cellular relationships and structures. 454 

INTEGRATION WITH EXISTING TOOLS 455 

cellSight seamlessly integrates with established tools such as Seurat, ensuring compatibility 456 

with widely adopted workflows in the single-cell analysis community. This integration allows 457 

users to leverage the strengths of both cellSight and Seurat, expanding the analytical 458 

capabilities and providing a more comprehensive toolkit for researchers. 459 

In summary, cellSight amalgamates state-of-the-art methods for QC, normalization, dimension 460 

reduction, differential expression analysis, and cell-cell interaction analysis, offering a robust 461 

and comprehensive solution for unraveling the complexities of single-cell genomics. 462 

Finally, to assess the performance of cellSight, we conducted thorough evaluations on two 463 

independent skin-related studies. The first dataset, derived from mouse skin tissue 24 hrs after 464 

injury, focused on how the different cell type dynamics change to adapt and heal the wound. 465 

The second dataset, originating from human skin, centered around the importance of 466 

fibroblasts' role in skin aging. Performance metrics, including QC plots, integration plots, and 467 

clustering, were calculated to validate the tool's effectiveness in accurately capturing cellular 468 

heterogeneity and differential gene expression patterns within the skin-related contexts.  469 
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RESOURCE AVAILABILITY 470 

LEAD CONTACT 471 

Further information and requests for resources and analysis should be directed to and will be 472 

fulfilled by the lead contact, Ali Rahnavard (rahnavard@gwu.edu). 473 

DATA AND CODE AVAILABILITY 474 

All original code has been deposited at https://zenodo.org/records/10041147 and is publicly 475 

available at https://github.com/omicsEye/cellSight. 476 

Any additional information required to reanalyze the data reported in this paper is available 477 

from the lead contact upon request. 478 
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